Skip to main content
Log in

Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Compared to conventional hyperthermia that is limited by low selectivity and severe side effects, nano-enabled hyperthermia yields great potentials to tackle these limitations for cancer treatment. Another major advance is the observation of immunological responses associated with nano-enabled hyperthermia, which introduces a new avenue, allowing a potential paradigm shift from the acutely effective and cytotoxicity-centric response to the next-phase discovery, i.e., long-lasting and/or systemic anti-tumor immunity. This perspective first discusses the temperature-gradient and the spatially-structured immunological landscape in solid tumors receiving nano-enabled hyperthermia. This includes the discussion about underlying mechanism such as immunogenic cell death, which initiates a profound immunological chain reaction. In order to propagate the immune activation as a viable therapeutic principle, we further discussed the tumor type-specific complexity in the immunological tumor microenvironment, including the creative design of nano-enabled combination therapy to synergize with nano-enabled hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu K F, Dupuy D E. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nature Reviews. Cancer, 2014, 14(3): 199–208

    CAS  PubMed  Google Scholar 

  2. Falk M H, Issels R D. Hyperthermia in oncology. International Journal of Hyperthermia, 2001, 17(1): 1–18

    Article  CAS  PubMed  Google Scholar 

  3. Field S B, Bleehen N M. Hyperthermia in the treatment of cancer. Cancer Treatment Reviews, 1979, 6(2): 63–94

    Article  CAS  PubMed  Google Scholar 

  4. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag P M. Hyperthermia in combined treatment of cancer. Lancet. Oncology, 2002, 3(8): 487–497

    Article  CAS  PubMed  Google Scholar 

  5. Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles. Advanced Drug Delivery Reviews, 2010, 62(3): 339–345

    Article  CAS  PubMed  Google Scholar 

  6. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia, 2008, 24(6): 467–474

    Article  CAS  PubMed  Google Scholar 

  7. Beik J, Abed Z, Ghoreishi F S, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava S K. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. Journal of Controlled Release, 2016, 235: 205–221

    Article  CAS  PubMed  Google Scholar 

  8. Huang X, Jain P K, El-Sayed I H, El-Sayed M A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23(3): 217–228

    Article  PubMed  Google Scholar 

  9. Jaque D, Maestro L M, Del Rosal B, Haro Gonzalez P, Benayas A, Plaza J, Rodriguez E M, Sole J. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6(16): 9494–9530

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Huang N, Li H, Wang H, Jin Q, Ji J. Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Applied Materials & Interfaces, 2014, 6(8): 5657–5668

    Article  CAS  Google Scholar 

  11. Kim H C, Kim E, Jeong S W, Ha T L, Park S I, Lee S G, Lee S J, Lee S W. Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale, 2015, 7(39): 16470–16480

    Article  CAS  PubMed  Google Scholar 

  12. Tamarov K P, Osminkina L A, Zinovyev S V, Maximova K A, Kargina J V, Gongalsky M B, Ryabchikov Y, Al Kattan A, Sviridov A P, Sentis M. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Scientific Reports, 2014, 4(1): 1–7

    Article  Google Scholar 

  13. Kumar R, Chauhan A, Jha S K, Kuanr B K. Localized cancer treatment by radio-frequency hyperthermia using magnetic nanoparticles immobilized on graphene oxide: from novel synthesis to in vitro studies. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2018, 6(33): 5385–5399

    Article  CAS  PubMed  Google Scholar 

  14. Cardinal J, Klune J R, Chory E, Jeyabalan G, Kanzius J S, Nalesnik M, Geller D A. Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles. Surgery, 2008, 144(2): 125–132

    Article  PubMed  Google Scholar 

  15. Kaczmarek K, Hornowski T, Kubovcikova M, Timko M, Koralewski M, Jozefczak A. Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles. ACS Applied Materials & Interfaces, 2018, 10(14): 11554–11564

    Article  CAS  Google Scholar 

  16. Beik J, Abed Z, Shakeri-Zadeh A, Nourbakhsh M, Shiran M B. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E, Low-Dimensional Systems and Nanostructures, 2016, 81: 308–314

    Article  CAS  Google Scholar 

  17. Devarakonda S B, Myers M R, Lanier M, Dumoulin C, Banerjee R K. Assessment of gold nanoparticle-mediated-enhanced hyperthermia using MR-guided high-intensity focused ultrasound ablation procedure. Nano Letters, 2017, 17(4): 2532–2538

    Article  CAS  PubMed  Google Scholar 

  18. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H. The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 2002, 43(1): 33–56

    Article  PubMed  Google Scholar 

  19. Lepock J R. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. International Journal of Hyperthermia, 2003, 19(3): 252–266

    Article  CAS  PubMed  Google Scholar 

  20. Roti J L. Cellular responses to hyperthermia (40 °C–46 °C): cell killing and molecular events. International Journal of Hyperthermia, 2008, 24(1): 3–15

    Article  CAS  Google Scholar 

  21. Fairchild K D, Viscardi R M, Hester L, Singh I S, Hasday J D. Effects of hypothermia and hyperthermia on cytokine production by cultured human mononuclear phagocytes from adults and newborns. Journal of Interferon & Cytokine Research, 2000, 20(12): 1049–1055

    Article  CAS  Google Scholar 

  22. Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunology, Immunotherapy, 2006, 55(3): 320–328

    Article  CAS  PubMed  Google Scholar 

  23. Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer Immunology, Immunotherapy, 2003, 52(2): 80–88

    Article  CAS  PubMed  Google Scholar 

  24. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nature Reviews. Immunology, 2017, 17(2): 97–111

    CAS  PubMed  Google Scholar 

  25. Todryk S, Melcher A, Dalgleish A, Vile R G. Heat shock proteins refine the danger theory. Immunology, 2000, 99(3): 334–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Z, Wang J, Chen C. Gold nanorods based platforms for light-mediated theranostics. Theranostics, 2013, 3(3): 223–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dickerson E B, Dreaden E C, Huang X, El Sayed I H, Chu H, Pushpanketh S, McDonald J F, El Sayed M A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Letters, 2008, 269(1): 57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chemical Society Reviews, 2013, 42(2): 530–547

    Article  CAS  PubMed  Google Scholar 

  29. Guo L, Yan D D, Yang D, Li Y, Wang X, Zalewski O, Yan B, Lu W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6): 5670–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Xu L, Liang C, Xiang J, Peng R, Liu Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Advanced Materials, 2014, 26(48): 8154–8162

    Article  CAS  PubMed  Google Scholar 

  31. Tao Y, Ju E, Ren J, Qu X. Immunostimulatory oligonucleotides-loaded cationic graphene oxide with photothermally enhanced immunogenicity for photothermal/immune cancer therapy. Biomaterials, 2014, 35(37): 9963–9971

    Article  CAS  PubMed  Google Scholar 

  32. Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, 7(1): 1–13

    Article  Google Scholar 

  33. Liu Y, Maccarini P, Palmer G M, Etienne W, Zhao Y, Lee C T, Ma X, Inman B A, Vo-Dinh T. Synergistic immuno photothermal nanotherapy (SYMPHONY) for the treatment of unresectable and metastatic cancers. Scientific Reports, 2017, 7(1): 8606

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nam J, Son S, Ochyl L J, Kuai R, Schwendeman A, Moon J J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nature Communications, 2018, 9(1): 1074

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu G T, Rao L, Wu H, Yang L L, Bu L L, Deng W W, Wu L, Nan X, Zhang W F, Zhao X Z, Liu W, Sun Z J. Myeloid-derived suppressor cell membrane-coated magnetic nanoparticles for cancer theranostics by Inducing macrophage polarization and synergizing immunogenic cell death. Advanced Functional Materials, 2018, 28(37): 1801389

    Article  Google Scholar 

  36. Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. Fluorescence imaging guided CpG nanoparticles-loaded IR820-hydrogel for synergistic photothermal immunotherapy. Biomaterials, 2019, 209: 111–125

    Article  CAS  PubMed  Google Scholar 

  37. Zhang D, Wu T, Qin X, Qiao Q, Shang L, Song Q, Yang C, Zhang Z. Intracellularly generated immunological gold nanoparticles for combinatorial photothermal therapy and immunotherapy against tumor. Nano Letters, 2019, 19(9): 6635–6646

    Article  CAS  PubMed  Google Scholar 

  38. Chao Y, Chen G, Liang C, Xu J, Dong Z, Han X, Wang C, Liu Z. Iron nanoparticles for low-power local magnetic hyperthermia in combination with immune checkpoint blockade for systemic antitumor therapy. Nano Letters, 2019, 19(7): 4287–4296

    Article  CAS  PubMed  Google Scholar 

  39. Ong C, Cha B G, Kim J. Mesoporous silica nanoparticles doped with gold nanoparticles for combined cancer immunotherapy and photothermal therapy. ACS Applied Bio Materials, 2019, 2(8): 3630–3638

    Article  CAS  PubMed  Google Scholar 

  40. Ma Y, Zhang Y, Li X, Zhao Y, Li M, Jiang W, Tang X, Dou J, Lu L, Wang F, Wang Y. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano, 2019, 13(10): 11967–11980

    Article  CAS  PubMed  Google Scholar 

  41. Wang Z, Guo B, Middha E, Huang Z, Hu Q, Fu Z, Liu B. Microfluidics-prepared uniform conjugated polymer nanoparticles for photo-triggered immune microenvironment modulation and cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(12): 11167–11176

    Article  CAS  Google Scholar 

  42. Li Y, Liu X, Pan W, Li N, Tang B. Photothermal therapy-induced immunogenic cell death based on natural melanin nanoparticles against breast cancer. Chemical Communications, 2020, 56(9): 1389–1392

    Article  CAS  PubMed  Google Scholar 

  43. Bezu L, Gomes-da-Silva L C, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Frontiers in Immunology, 2015, 6: 187

    PubMed  PubMed Central  Google Scholar 

  44. Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angewandte Chemie International Edition, 2019, 58(3): 670–680

    Article  CAS  PubMed  Google Scholar 

  45. Rodallec A, Sicard G, Fanciullino R, Benzekry S, Lacarelle B, Milano G, Ciccolini J. Turning cold tumors into hot tumors: harnessing the potential of tumor immunity using nanoparticles. Expert Opinion on Drug Metabolism & Toxicology, 2018, 14(11): 1139–1147

    CAS  Google Scholar 

  46. Wang S, Riedinger A, Li H, Fu C, Liu H, Li L, Liu T, Tan L, Barthel M J, Pugliese G, De Donato F, Scotto D’Abbusco M, Meng X, Manna L, Meng H, Pellegrino T. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects. ACS Nano, 2015, 9(2): 1788–1800

    Article  CAS  PubMed  Google Scholar 

  47. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annual Review of Immunology, 2013, 31(1): 51–72

    Article  CAS  PubMed  Google Scholar 

  48. Garg A D, Dudek-Peric A M, Romano E, Agostinis P. Immunogenic cell death. International Journal of Developmental Biology, 2015, 59(1–3): 131–140

    Article  CAS  Google Scholar 

  49. Liu X, Jiang J, Liao Y P, Tang I, Zheng E, Qiu W, Lin M, Wang X, Ji Y, Mei K C, et al. Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1. Advancement of Science, 2021, 8(6): 2002147

    CAS  Google Scholar 

  50. Wong D Y, Ong W W, Ang W H. Induction of immunogenic cell death by chemotherapeutic platinum complexes. Angewandte Chemie International Edition in English, 2015, 54(22): 6483–6487

    Article  CAS  Google Scholar 

  51. Verfaillie T, Rubio N, Garg A D, Bultynck G, Rizzuto R, Decuypere J P, Piette J, Linehan C, Gupta S, Samali A, Agostinis P. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death and Differentiation, 2012, 19(11): 1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garg A D, Krysko D V, Verfaillie T, Kaczmarek A, Ferreira G B, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek A J, Annaert W, Golab J, de Witte P, Vandenabeele P, Agostinis P. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO Journal, 2012, 31(5): 1062–1079

    Article  CAS  Google Scholar 

  53. Radogna F, Diederich M. Stress-induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochemical Pharmacology, 2018, 153: 12–23

    Article  CAS  PubMed  Google Scholar 

  54. Krysko D V, Garg A D, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews. Cancer, 2012, 12(12): 860–875

    CAS  PubMed  Google Scholar 

  55. Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nature Communications, 2019, 10(1): 3349

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dimou A, Syrigos K N, Saif M W. Overcoming the stromal barrier: technologies to optimize drug delivery in pancreatic cancer. Therapeutic Advances in Medical Oncology, 2012, 4(5): 271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meng H, Zhao Y, Dong J, Xue M, Lin Y S, Ji Z, Mai W X, Zhang H, Chang C H, Brinker C J, Zink J I, Nel A E. Two-wave nanotherapy to target the stroma and optimize gemcitabine delivery to a human pancreatic cancer model in mice. ACS Nano, 2013, 7(11): 10048–10065

    Article  CAS  PubMed  Google Scholar 

  58. Miao L, Lin C M, Huang L. Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. Journal of Controlled Release, 2015, 219: 192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meng H, Nel A E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 2018, 130: 50–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosenberg A, Mahalingam D. Immunotherapy in pancreatic adenocarcinoma-overcoming barriers to response. Journal of Gastrointestinal Oncology, 2018, 9(1): 143–159

    Article  PubMed  PubMed Central  Google Scholar 

  61. Torphy R J, Zhu Y, Schulick R D. Immunotherapy for pancreatic cancer: barriers and breakthroughs. Annals of Gastroenterological Surgery, 2018, 2(4): 274–281

    Article  PubMed  PubMed Central  Google Scholar 

  62. Issels R D. Hyperthermia adds to chemotherapy. European Journal of Cancer, 2008, 44(17): 2546–2554

    Article  CAS  PubMed  Google Scholar 

  63. Nam J, Son S, Park K S, Zou W P, Shea L D, Moon J J. Cancer nanomedicine for combination cancer immunotherapy. Nature Reviews. Materials, 2019, 4(6): 398–414

    Google Scholar 

  64. Peng J, Xiao Y, Li W, Yang Q, Tan L, Jia Y, Qu Y, Qian Z. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Advancement of Science, 2018, 5(5): 1700891

    Google Scholar 

  65. Li Y, Li X, Zhou F, Doughty A, Hoover A R, Nordquist R E, Chen W R. Nanotechnology-based photoimmunological therapies for cancer. Cancer Letters, 2019, 442: 429–438

    Article  CAS  PubMed  Google Scholar 

  66. Liu X, Zhang Y, Wang Y, Zhu W, Li G, Ma X, Zhang Y, Chen S, Tiwari S, Shi K, Zhang S, Fan H M, Zhao Y X, Liang X J. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy. Theranostics, 2020, 10(8): 3793–3815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mei K C, Liao Y P, Jiang J, Chiang M, Khazaieli M, Liu X, Wang X, Liu Q, Chang C H, Zhang X, Li J, Ji Y, Melano B, Telesca D, Xia T, Meng H, Nel A E. Liposomal delivery of mitoxantrone and a cholesteryl indoximod prodrug provides effective chemo-immunotherapy in multiple solid tumors. ACS Nano, 2020, 14(10): 13343–13366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stephen Z R, Zhang M. Recent progress in the synergistic combination of nanoparticle-mediated hyperthermia and immunotherapy for treatment of cancer. Advanced Healthcare Materials, 2020, 10(2): 2001415

    Article  Google Scholar 

  69. Wang S, Sun Z, Hou Y. Engineering nanoparticles toward the modulation of emerging cancer immunotherapy. Advanced Healthcare Materials, 2020, 10(5): e2000845

    Article  PubMed  Google Scholar 

  70. Mortezaee K, Narmani A, Salehi M, Bagheri H, Farhood B, Haghi-Aminjan H, Najafi M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sciences, 2021, 269: 119020

    Article  CAS  PubMed  Google Scholar 

  71. Liu X S, Jiang J H, Chang C H, Liao Y P, Jared J L, Tang I, Zheng E, Qiu W, Lin M, Wang X, et al. Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy. Small, 2021, 17(14): 2005993

    Article  CAS  Google Scholar 

  72. Chen J, Lin L, Yan N, Hu Y, Fang H, Guo Z, Sun P, Tian H, Chen X. Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Science China Materials, 2018, 61(11): 1484–1494

    Article  CAS  Google Scholar 

  73. Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano, 2018, 12(12): 11740–11755

    Article  CAS  PubMed  Google Scholar 

  74. Allen S D, Liu X, Jiang J, Liao Y P, Chang C H, Nel A E, Meng H. Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. Biomaterials, 2021, 269: 120635

    Article  CAS  PubMed  Google Scholar 

  75. Chen P M, Pan W Y, Wu C Y, Yeh C Y, Korupalli C, Luo P K, Chou C J, Chia W T, Sung H W. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials, 2020, 230: 119629

    Article  CAS  PubMed  Google Scholar 

  76. Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. Journal of Controlled Release, 2020, 325: 235–248

    Article  CAS  PubMed  Google Scholar 

  77. Teo P Y, Yang C, Whilding L M, Parente-Pereira A C, Maher J, George A J, Hedrick J L, Yang Y Y, Ghaem-Maghami S. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Advanced Healthcare Materials, 2015, 4(8): 1180–1189

    Article  CAS  PubMed  Google Scholar 

  78. Golden E B, Apetoh L. Radiotherapy and immunogenic cell death. Seminars in Radiation Oncology, 2015, 25(1): 11–17

    Article  PubMed  Google Scholar 

  79. Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. OncoImmunology, 2013, 2(10): e26536

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31671017 and 81872809) and the startup funding support from The Cancer Hospital of the University of Chinese Academy of Sciences (CAS), Institute of Basic Medicine and Cancer (IBMC), CAS. HM thanks the start-up packages of NCNST, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xueqing Wang or Huan Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Sun, H., Wang, X. et al. Immunological effects of nano-enabled hyperthermia for solid tumors: opportunity and challenge. Front. Chem. Sci. Eng. 16, 333–344 (2022). https://doi.org/10.1007/s11705-021-2059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2059-5

Keywords

Navigation