Skip to main content
Log in

Numerical modeling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A computational model for an ozone oxidation column reactor used in dyeing wastewater treatment is proposed to represent, simulate, and predict the ozone bubble process. Considering the hydrodynamics, mass transfer, and ozone oxidation reaction, coupling modeling can more realistically calculate the ozone oxidation bubble process than the splitting methods proposed in previous research. The modeling is validated and shows great consistency with experimental data. The verified model is used to analyze the effect of operating conditions, such as the initial gas velocity and the ozone concentration, and structural conditions, such as multiple gas inlets. The ozone consumption is influenced by the gas velocity and the initial ozone concentration. The ozone’s utilization decreases with the increasing gas velocity while nearly the same at different initial ozone concentrations. Simulation results can be used in guiding the practical operation of dyeing wastewater treatment and in other ozonation systems with known rate constants in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

interface area, m2

c :

molar concentration, mol · m−3

D :

diffusion coefficient, m2 · s−1

d e :

equivalent diameter, mm

E :

enhancement factor, dimensionless

F s :

external body forces, N

g :

gravity acceleration, m · s−2

H cp :

Henry’s law constant, mol · m−3 · Pa−1

Ha :

Hatta number, dimensionless

j :

mass diffusion flux, kg · m−2 · s−1

K :

kinetic constant, m3 · kmol−1 · s−1

k :

mass transfer coefficient, m · s−2

:

mass flux per control volume, kg · m−3 · s−1

p :

pressure, N · m−2

R :

chemical consumption rate, kmol · m−3 · s−1

t :

time, s

u :

velocity vector, m · s−1

u g0 :

initial gas velocity, m · s−1

V cell :

control volume, m3

Y :

mass fraction, dimensionless

μ :

dynamic viscosity, kg · m−1 · s−1

r :

density, kg · m−3

a :

volume fraction per control volume, dimensionless

g :

gas phase

l :

liquid phase

b :

bubble

References

  1. Bourgin M, Borowska E, Helbing J, Hollender J, Kaiser H P, Kienle C, McArdell C S, Simon E, von Gunten U. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Water Research, 2017, 122: 234–245

    Article  CAS  Google Scholar 

  2. Qiu L, Zhang R, Zhang Y, Li C, Zhang Q, Zhou Y. Super-hydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation. Frontiers of Chemical Science and Engineering, 2018, 12(3): 390–399

    Article  CAS  Google Scholar 

  3. Yang Y, Zhang H, Yan Y. Catalytic wet peroxide oxidation of m-cresol over novel Fe2O3 loaded microfibrous entrapped CNT composite catalyst in a fixed-bed reactor. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2018, 93(9): 2552–2563

    Article  CAS  Google Scholar 

  4. Yang Y, Zhang H, Yan Y. The preparation of Fe2O3-ZSM-5 catalysts by metal-organic chemical vapour deposition method for catalytic wet peroxide oxidation of m-cresol. Royal Society Open Science, 2018, 5(3): 171731

    Article  Google Scholar 

  5. Bhatti Z I, Toda H, Furukawa K. p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Research, 2002, 36(5): 1135–1142

    Article  CAS  Google Scholar 

  6. Yan Y, Huang P, Zhang H. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption. Frontiers of Chemical Science and Engineering, 2019, 13(4): 772–783

    Article  CAS  Google Scholar 

  7. Matino I, Colla V, Branca T A. Extension of pilot tests of cyanide elimination by ozone from blast furnace gas washing water through Aspen Plus® based model. Frontiers of Chemical Science and Engineering, 2018, 12(4): 718–730

    Article  CAS  Google Scholar 

  8. Arnold M, Batista J, Dickenson E, Gerrity D. Use of ozonebiofiltration for bulk organic removal and disinfection byproduct mitigation in potable reuse applications. Chemosphere, 2018, 202: 228–237

    Article  CAS  Google Scholar 

  9. Yu J W, Jung G B, Chen C W, Yeh C C, Nguyen X V, Ma C C, Hsieh C W, Lin C L. Innovative anode catalyst designed to reduce the degradation in ozone generation via PEM water electrolysis. Renewable Energy, 2018, 129: 800–805

    Article  CAS  Google Scholar 

  10. Zhou H, Smith D W. Ozone mass transfer in water and wastewater treatment: experimental observations using a 2D laser particle dynamics analyzer. Water Research, 2000, 34(3): 909–921

    Article  CAS  Google Scholar 

  11. Yang Y, Zhang H, Yan Y. Preparation of novel iron-loaded microfibers entrapped carbon-nanotube composites for catalytic wet peroxide oxidation of m-cresol in a fixed bed reactor. Separation and Purification Technology, 2019, 212: 405–415

    Article  CAS  Google Scholar 

  12. Xiao Q, Wang J, Yang N, Li J. Simulation of the multiphase flow in bubble columns with stability-constrained multi-fluid CFD models. Chemical Engineering Journal, 2017, 329(Suppl C): 88–99

    Article  CAS  Google Scholar 

  13. Zhang J, Yu Y, Qu C, Zhang Y. Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate. Chemical Engineering Science, 2017, 168: 1–10

    Article  CAS  Google Scholar 

  14. Li H, Yi F, Li X, Pavlenko A N, Gao X. Numerical simulation for falling film flow characteristics of refrigerant on the smooth and structured surfaces. Journal of Engineering Thermophysics, 2018, 27(1): 1–19

    Article  CAS  Google Scholar 

  15. Zhang J, Huck P M, Anderson W B, Stubley G D. A computational fluid dynamics based integrated disinfection design approach for improvement of full-scale ozone contactor performance. Ozone Science and Engineering, 2007, 29(6): 451–460

    Article  CAS  Google Scholar 

  16. Zhang J, Tejada-Martinez A E, Zhang Q, Lei H. Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework. Water Research, 2014, 52: 155–167

    Article  CAS  Google Scholar 

  17. Jia H W, Zhang P. Mass transfer of a rising spherical bubble in the contaminated solution with chemical reaction and volume change. International Journal of Heat and Mass Transfer, 2017, 110: 43–57

    Article  CAS  Google Scholar 

  18. Gong X, Takagi S, Huang H, Matsumoto Y. A numerical study of mass transfer of ozone dissolution in bubble plumes with an Euler-Lagrange method. Chemical Engineering Science, 2007, 62(4): 1081–1093

    Article  CAS  Google Scholar 

  19. Legendre D, Zevenhoven R. Detailed experimental study on the dissolution of CO2 and air bubbles rising in water. Chemical Engineering Science, 2017, 158: 552–560

    Article  CAS  Google Scholar 

  20. Sebastia-Saez D, Gu S, Ranganathan P, Papadikis K. Micro-scale CFD modeling of reactive mass transfer in falling liquid films within structured packing materials. International Journal of Greenhouse Gas Control, 2015, 33: 40–50

    Article  CAS  Google Scholar 

  21. Zhou H, Smith W D. Process parameter development for ozonation of kraft pulp mill effluents. Water Science and Technology, 1997, 35(2): 251–259

    CAS  Google Scholar 

  22. Cruz-Alcalde A, Esplugas S, Sans C. Abatement of ozonerecalcitrant micropollutants during municipal wastewater ozonation: kinetic modelling and surrogate-based control strategies. Chemical Engineering Journal, 2019, 360: 1092–1100

    Article  CAS  Google Scholar 

  23. Cheng Z, Yang B, Chen Q, Gao X, Tan Y, Ma Y, Shen Z. A quantitative-structure-activity-relationship (QSAR) model for the reaction rate constants of organic compounds during the ozonation process at different temperatures. Chemical Engineering Journal, 2018, 353: 288–296

    Article  CAS  Google Scholar 

  24. Cheng Z, Yang B, Chen Q, Tan Y, Gao X, Yuan T, Shen Z. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation. Chemosphere, 2018, 212: 828–836

    Article  CAS  Google Scholar 

  25. Chu L B, Xing X H, Yu A F, Sun X L, Jurcik B. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Safety and Environmental Protection, 2008, 86(5): 389–393

    Article  CAS  Google Scholar 

  26. Kuosa M, Laari A, Kallas J. Determination of the Henry’s coefficient and mass transfer for ozone in a bubble column at different pH values of water. Ozone Science and Engineering, 2004, 26(3): 277–286

    Article  CAS  Google Scholar 

  27. Tiwari G, Bose P. Determination of ozone mass transfer coefficient in a tall continuous flow counter-current bubble contactor. Chemical Engineering Journal, 2007, 132(1–3): 215–225

    Article  CAS  Google Scholar 

  28. Modak S Y, Juvekar V A, Rane V C. Comparison of the single-bubble-class and modified two-bubble-class models of bubble column reactors. Chemical Engineering & Technology, 1994, 17(5): 313–322

    Article  CAS  Google Scholar 

  29. Flores-Payan V, Herrera-Lopez E J, Navarro-Laboulais J, LopezLopez A. Parametric sensitivity analysis and ozone mass transfer modeling in a gas-liquid reactor for advanced water treatment. Journal of Industrial and Engineering Chemistry, 2015, 21: 1270–1276

    Article  CAS  Google Scholar 

  30. Kim J H, Tomiak R B, Mariñas B J. Inactivation of cryptosporidium oocysts in a pilot-scale ozone bubble-diffuser contactor. I: model development. Journal of Environmental Engineering, 2002, 128(6): 514–521

    Article  CAS  Google Scholar 

  31. Kendoush A A. Heat, mass, and momentum transfer to a rising ellipsoidal bubble. Industrial & Engineering Chemistry Research, 2007, 46(26): 9232–9237

    Article  CAS  Google Scholar 

  32. Zhang S, Lv Z Y, Muller D, Wozny G. PBM-CFD investigation of the gas holdup and mass transfer in a lab-scale internal loop airlift reactor. IEEE Access: Practical Innovations, Open Solutions, 2017, 5: 2711–2719

    Article  Google Scholar 

  33. Nedeltchev S. Theoretical prediction of mass transfer coefficients in both gas-liquid and slurry bubble columns. Chemical Engineering Science, 2017, 157: 169–181

    Article  CAS  Google Scholar 

  34. Cockx A, Do-Quang Z, Liné A, Roustan M. Use of computational fluid dynamics for simulating hydrodynamics and mass transfer in industrial ozonation towers. Chemical Engineering Science, 1999, 54(21): 5085–5090

    Article  CAS  Google Scholar 

  35. Nock W J, Heaven S, Banks C J. Mass transfer and gas-liquid interface properties of single CO2 bubbles rising in tap water. Chemical Engineering Science, 2016, 140: 171–178

    Article  CAS  Google Scholar 

  36. Ozkan F, Wenka A, Hansjosten E, Pfeifer P, Kraushaar-Czarnetzki B. Numerical investigation of interfacial mass transfer in two phase flows using the VOF method. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 100–110

    Article  Google Scholar 

  37. Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 2015, 15(8): 4399–4981

    Article  CAS  Google Scholar 

  38. Beltrán F J, Gómez-Serrano V, Durán A. Degradation kinetics of p-nitrophenol ozonation in water. Water Research, 1992, 26(1): 9–17

    Article  Google Scholar 

  39. Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water—II: dissociating organic compounds. Water Research, 1983, 17(2): 185–194

    Article  Google Scholar 

  40. Gander W, Golub G H, Strebel R. Least-squares fitting of circles and ellipses. BIT Numerical Mathematics, 1994, 34(4): 558–578

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Key Research and Development Program of China (Grant No. 2018YFB0604900), and the Major Science and Technology Program for Water Pollution Control and Treatment (Grant No. 2015ZX07202-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Gao.

Electronic Supplementary Material

11705_2020_1963_MOESM1_ESM.pdf

Numerical modeling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Yi, F., Li, X. et al. Numerical modeling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater. Front. Chem. Sci. Eng. 15, 602–614 (2021). https://doi.org/10.1007/s11705-020-1963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1963-4

Keywords

Navigation