Skip to main content
Log in

A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) has been increasingly utilized in the fields of food, biomedicine, environment and other fields because of its benign biocompatible. We encapsulated two kinds of GO with different sizes on yeast cells with the assistance of polyelectrolytes poly (styrene sulfonic acid) sodium salt (PSS) and polyglutamic acid (PGA) (termed as Y@GO). The result does not show a significant difference between the properties of the two types of Y@GO (namely Y@GO1 and Y@GO2). The encapsulation layers are optimized as Yeast/PGA/PSS/PGA/GO/PGA/PSS based on the morphology, dispersity, colony-forming unit, and zeta potential. The encapsulation of GO increases the roughness of the yeast. It is proved that the Y@GO increases the survival time and enhance the activity of yeast cells. The GO shell improves the resistance of yeast cells against pH and salt stresses and extends the storage time of yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park J H, Kim K, Lee J, Choi J Y, Hong D, Yang S H, Caruso F, Lee Y, Choi I S. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angewandte Chemie, 2014, 126(46): 12628–12633

    Article  Google Scholar 

  2. Lin J K, Wang X Y, Tang R K. Regulations of organism by materials: a new understanding of biological inorganic chemistry. Journal of Biological Inorganic Chemistry, 2019, 24(4): 467–481

    Article  CAS  Google Scholar 

  3. Sreeprasad T S, Nguyen P, Alshogeathri A, Hibbeler L, Martinez F, McNeil N, Berry V. Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot. Scientific Reports, 2015, 5(1): 9138

    Article  CAS  Google Scholar 

  4. Lee H, Hong D, Choi J Y, Kim J Y, Lee S H, Kim H M, Yang S H, Choi I S. Layer-by-layer-based silica encapsulation of individual yeast with thickness control. Chemistry, an Asian Journal, 2015, 10 (1): 129–132

    Article  CAS  Google Scholar 

  5. Wang B, Liu P, Jiang W, Pan H, Xu X, Tang R. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie, 2008, 120(19): 3616–3620

    Article  Google Scholar 

  6. Wu Q X, Guan Y X, Yao S J. Sodium cellulose sulfate: a promising biomaterial used for microcarriers’ designing. Frontiers of Chemical Science and Engineering, 2019, 13(1): 46–58

    Article  CAS  Google Scholar 

  7. Benucci I, Cerreti M, Maresca D, Mauriello G, Esti M. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production. Food Chemistry, 2019, 300: 1–10

    Article  Google Scholar 

  8. Soma P K, Williams P D, Lo Y M. Advancements in non-starch polysaccharides researchfor frozen foods and microencapsulation of probiotics. Frontiers of Chemical Engineering in China, 2009, 3(4): 413–426

    Article  CAS  Google Scholar 

  9. Dzamukova M R, Naumenko E A, Lannik N I, Fakhrullin R F. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomaterials Science, 2013, 1(8): 810–813

    Article  CAS  Google Scholar 

  10. Park J H, Hong D, Lee J, Choi I S. Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Accounts of Chemical Research, 2016, 49(5): 792–800

    Article  CAS  Google Scholar 

  11. Chen C C, Lin H J, Lu W J, Wu J J, Chew C H, Wong C H, Yang C Y, Lin H T V. Enhanced repeated-batch bioethanol fermentation of red seaweeds hydrolysates using microtube array membrane-encapsulated yeast. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 138–145

    Article  CAS  Google Scholar 

  12. Drachuk I, Shchepelina O, Harbaugh S, Kelley-Loughnane N, Stone M, Tsukruk V V. Cell surface engineering with edible protein nanoshells. Small, 2013, 9(18): 3128–3137

    Article  CAS  Google Scholar 

  13. Konnova S A, Sharipova I R, Demina T A, Osin Y N, Yarullina D R, Ilinskaya O N, Lvov Y M, Fakhrullin R F. Biomimetic cellmediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 2013, 49(39): 4208–4210

    Article  CAS  Google Scholar 

  14. Lee J, Yang S H, Hong S P, Hong D, Lee H, Lee H Y, Kim Y G, Choi I S. Chemical control of yeast cell division by cross-linked shells of catechol-grafted polyelectrolyte multilayers. Macromolecular Rapid Communications, 2013, 34(17): 1351–1356

    Article  CAS  Google Scholar 

  15. Kim B J, Park T, Park S Y, Han S W, Lee H S, Kim Y G, Choi I S. Control of microbial growth in alginate/polydopamine core/shell microbeads. Chemistry, an Asian Journal, 2015, 10(10): 2130–2133

    Article  CAS  Google Scholar 

  16. Rabea E I, Badawy E T, Stevens C V, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4(6): 1457–1465

    Article  CAS  Google Scholar 

  17. Drachuk I, Gupta M K, Tsukruk V V. Biomimetic coatings to control cellular function through cell surface engineering. Advanced Functional Materials, 2013, 23(36): 4437–4453

    Article  CAS  Google Scholar 

  18. Konnova S A, Lvov Y M, Fakhrullin R F. Magnetic halloysite nanotubes for yeast cell surface engineering. Clay Minerals, 2018, 51(3): 429–433

    Article  Google Scholar 

  19. Kiran S K, Shukla S, Struck A, Saxena S. Surface engineering of graphene oxide shells using lamellar LDH nanostructures. ACS Applied Materials & Interfaces, 2019, 11(22): 20232–20240

    Article  Google Scholar 

  20. Dong Y, Chang Y, Gao H, León Anchustegui V A, Yu Q, Wang H, Liu J H, Wang S. Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions. Toxicology Research, 2019, 8(6): 908–917

    Article  CAS  Google Scholar 

  21. Gao H, Liu J H, Anchustegui V A L, Chang Y, Zhang J, Dong Y. The protective effects of graphene oxide against the stress from organic solvent by covering Hela cells. Current Nanoscience, 2019, 15(4): 412–419

    Article  CAS  Google Scholar 

  22. Fakhrullin R F, Zamaleeva A I, Morozov M V, Tazetdinova D I, Alimova F K, Hilmutdinov A K, Zhdanov R I, Kahraman M, Culha M. Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles. Langmuir, 2009, 25(8): 4628–4634

    Article  CAS  Google Scholar 

  23. Doonan C, Ricco R, Liang K, Bradshaw D, Falcaro P. Metal-organic frameworks at the biointerface: synthetic strategies and applications. Accounts of Chemical Research, 2017, 50(6): 1423–1432

    Article  CAS  Google Scholar 

  24. Rezaei A, Fathi M, Jafari S M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 2019, 88: 146–162

    Article  CAS  Google Scholar 

  25. Schlesinger O, Alfonta L. Encapsulation of microorganisms, enzymes, and redox mediators in graphene oxide and reduced graphene oxide. Methods in Enzymology, 2018, 609: 197–219

    Article  CAS  Google Scholar 

  26. Smart S K, Cassady A I, Lu G Q, Martin D J. The biocompatibility of carbon nanotubes. Carbon, 2006, 44(6): 1034–1047

    Article  CAS  Google Scholar 

  27. Wahid M H, Eroglu E, LaVars S M, Newton K, Gibson C T, Stroeher U H, Chen X J, Boulos R A, Raston C L, Harmer S L. Microencapsulation of bacterial strains in graphene oxide nanosheets using vortex fluidics. RSC Advances, 2015, 5(47): 37424–37430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Project of China (Grant No. 218YFA0903000), the National Natural Science Foundation of China (Grant Nos. 21606013, 21301015), National Mega-project for Innovative Drugs (Grant No. 2019ZX09721001-007-002), and Shenzhen Science and Technology Project (Grant No. JCYJ20180507183842516).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Hui Liu or Shihui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Chang, Y., Zhu, J. et al. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Front. Chem. Sci. Eng. 15, 410–420 (2021). https://doi.org/10.1007/s11705-020-1950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1950-9

Keywords

Navigation