Skip to main content
Log in

Selective hydrogenation of acetylene over Pd/CeO2

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Five hundred ppm Pd/CeO2 catalyst was prepared and evaluated in selective hydrogenation of acetylene in large excess of ethylene since ceria has been recently found to be a reasonable stand-alone catalyst for this reaction. Pd/CeO2 catalyst could be activated in situ by the feed gas during reactions and the catalyst without reduction showed much better ethylene selectivity than the reduced one in the high temperature range due to the formation of oxygen vacancies by reduction. Excellent ethylene selectivity of ∼100% was obtained in the whole reaction temperature range of 50°C–200°C for samples calcined at temperatures of 600°C and 800°C. This could be ascribed to the formation of PdxCe1−xO2−y or Pd-O-Ce surface species based on the X-ray diffraction and X-ray photoelectron spectroscopy results, indicating the strong interaction between palladium and ceria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borodzinki A. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering, 2006, 48(2): 91–144

    Article  CAS  Google Scholar 

  2. Azizi Y, Petit C, Pitchon V. Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. Journal of Catalysis, 2008, 256(2): 338–344

    Article  CAS  Google Scholar 

  3. Chesnokov V V, Podyacheva O Y, Richards R M. Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Materials Research Bulletin, 2017, 88: 78–84

    Article  CAS  Google Scholar 

  4. McEwan L, Julius M, Roberts S, Fletcher J C Q. A review of the use of gold catalysts in selective hydrogenation reactions. Gold Bulletin, 2010, 43(4): 298–306

    Article  CAS  Google Scholar 

  5. Pei G X, Liu X Y, Wang A, Lee A F, Isaacs M A, Li L, Pan X, Yang X, Wang X, Tai Z, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catalysis, 2015, 5(6): 3717–3725

    Article  CAS  Google Scholar 

  6. Zhang S, Li J, Xia Z M, Wu C, Zhang Z Y, Ma Y Y, Qu Y Q. Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. Nanoscale, 2017, 9(9): 3140–3149

    Article  CAS  PubMed  Google Scholar 

  7. Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: Quantum chemical studies compared to experiment. Chemical Reviews, 2013, 113(6): 3949–3985

    Article  CAS  PubMed  Google Scholar 

  8. Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/Ceria for CO and propane oxidation. ACS Catalysis, 2016, 6(4): 2265–2279

    Article  CAS  Google Scholar 

  9. Atzori L, Cutrufello M G, Meloni D, Cannas C, Gazzoli D, Monaci R, Sini M F, Rombi E. Highly active NiO-CeO2 catalysts for synthetic natural gas production by CO2 methanation. Catalysis Today, 2018, 299: 183–192

    Article  CAS  Google Scholar 

  10. Tan H Y, Wang J, Yu S Z, Zhou K B. Support morphology-dependent catalytic activity of Pd/CeO2 for formaldehyde oxidation. Environmental Science & Technology, 2015, 49(14): 8675–8682

    Article  CAS  Google Scholar 

  11. Kang J H, Shin E W, Kim W J, Park J D, Moon S H. Selective hydrogenation of acetylene on Pd/SiO2 catalysts promoted with Ti, Nb and Ce oxides. Catalysis Today, 2000, 63(2–4): 183–188

    Article  Google Scholar 

  12. Werner K, Weng X F, Calaza F, Sterrer M, Kropp T, Paier J, Sauer J, Wilde M, Fukutani K, Shaikhutdinov S, Freund H J. Toward an understanding of selective alkyne hydrogenation on ceria: On the impact of O vacancies on H2 interaction with CeO2(111). Journal of the American Chemical Society, 2017, 139(48): 17608–17616

    Article  CAS  PubMed  Google Scholar 

  13. Carrasco J, Vilé G, Fernández-Torre D, Pérez R, Pérez-Ramírez J, Ganduglia-Pirovano M V. Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. Journal of Physical Chemistry C, 2014, 118(10): 5352–5360

    Article  CAS  Google Scholar 

  14. Vilé G, Bridier B, Wichert J, Pérez-Ramírez J. Ceria in hydrogenation catalysis: High selectivity in the conversion of alkynes to olefins. Angewandte Chemie International Edition, 2012, 51(34): 8620–8623

    Article  PubMed  CAS  Google Scholar 

  15. Nelson N C, Manzano J S, Sadow A D, Overbury S H, Slowing I I. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catalysis, 2015, 5(4): 2051–2061

    Article  CAS  Google Scholar 

  16. Panagiotopoulou P, Kondarides D I. Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water-gas shift reaction. Catalysis Today, 2006, 112(1–4): 49–52

    Article  CAS  Google Scholar 

  17. Luo Y, Xiao Y, Cai G, Zheng Y, Wei K. Complete methanol oxidation in carbon monoxide streams over Pd/CeO2 catalysts: Correlation between activity and properties. Applied Catalysis B: Environmental, 2013, 136: 317–324

    Article  CAS  Google Scholar 

  18. Boronin A I, Slavinskaya E M, Danilova I G, Gulyaev R V, Amosov Y I, Kuznetsov P A, Polukhina I A, Koscheev S V, Zaikovskii V I, Noskov A S. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catalysis Today, 2009, 144(3): 201–211

    Article  CAS  Google Scholar 

  19. Slavinskaya E M, Kardash T Y, Stonkus O A, Gulyaev R V, Lapin I N, Svetlichnyi V A, Boronin A I. Metal-support interaction in Pd/CeO2 model catalysts for CO oxidation: From pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catalysis Science & Technology, 2016, 6(17): 6650–6666

    Article  CAS  Google Scholar 

  20. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews. Science and Engineering, 1996, 38(4): 439–520

    Article  CAS  Google Scholar 

  21. Bera P, Patil K C, Jayaram V, Subbanna G N, Hegde M S. Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal-ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation. Journal of Catalysis, 2000, 196(2): 293–301

    Article  CAS  Google Scholar 

  22. Yao H C, Yao Y F Y. Ceria in automotive exhaust catalysts. 1. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265

    Article  CAS  Google Scholar 

  23. Meunier F, Maffre M, Schuurman Y, Colussi S, Trovarelli A. Acetylene semi-hydrogenation over Pd-Zn/CeO2: Relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105: 52–55

    Article  CAS  Google Scholar 

  24. Padole M C, Gangwar B P, Pandey A, Singhal A, Sharma S, Deshpande P A. Adsorption of C2 gases over CeO2-based catalysts: Synergism of cationic sites and anionic vacancies. Physical Chemistry Chemical Physics, 2017, 19(21): 14148–14159

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Chen C Y, Jang B W L, Zhu A M. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256: 161–169

    Article  CAS  Google Scholar 

  26. Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A Chemical, 2014, 395: 137–144

    Article  CAS  Google Scholar 

  27. Kurnatowska M, Kepinski L, Mista W. Structure evolution of nanocrystalline Ce1−xPdxO2−y mixed oxide in oxidizing and reducing atmosphere: Reduction-induced activity in low-temperature CO oxidation. Applied Catalysis B: Environmental, 2012, 117: 135–147

    Article  CAS  Google Scholar 

  28. Guo T, Du J, Li J. The effects of ceria morphology on the properties of Pd/ceria catalyst for catalytic oxidation of low-concentration methane. Journal of Materials Science, 2016, 51(24): 10917–10925

    Article  CAS  Google Scholar 

  29. Slavinskaya E M, Gulyaev R V, Zadesenets A V, Stonkus O A, Zaikovskii V I, Shubin Y V, Korenev S V, Boronin A I. Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Applied Catalysis B: Environmental, 2015, 166–167: 91–103

    Article  CAS  Google Scholar 

  30. Spezzati G, Su Y, Hofmann J P, Benavidez A D, DeLaRiva A T, McCabe J, Datye A K, Hensen E J M. Atomically dispersed Pd O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catalysis, 2017, 7(10): 6887–6891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Craciun R, Daniell W, Knözinger H. The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming. Applied Catalysis A, General, 2002, 230(1): 153–168

    Article  CAS  Google Scholar 

  32. Tessier D, Rakai A, Bozon-Verduraz F. Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium-alumina catalysts. Journal of the Chemical Society, Faraday Transactions, 1992, 88(5): 741–749

    Article  CAS  Google Scholar 

  33. Bensalem A, Verduraz F B. Palladium-ceria catalysts: Metal-support interactions and reactivity of palladium in selective hydrogenation of but-1-yne. Reaction Kinetics and Catalysis Letters, 1997, 60(1): 71–77

    Article  CAS  Google Scholar 

  34. Vilé G, Wrabetz S, Floryan L, Schuster M E, Girgsdies F, Teschner D, Pérez-Ramírez J. Stereo- and chemoselective character of supported CeO2 catalysts for continuous-flow three-phase alkyne hydrogenation. ChemCatChem, 2014, 6(7): 1928–1934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Welch Foundation (#T-0014) and the CNMS user program of the Oak Ridge National Laboratory. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research, ACS PRF (#57596-UR5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben W. L. Jang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Lyu, T., He, J. et al. Selective hydrogenation of acetylene over Pd/CeO2. Front. Chem. Sci. Eng. 14, 929–936 (2020). https://doi.org/10.1007/s11705-019-1912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1912-2

Keywords

Navigation