Skip to main content
Log in

Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Novel, hierarchical, flower-like Ag/Cu2O and Au/Cu2O nanostructures were successfully fabricated and applied as efficient electrocatalysts for the electrochemical reduction of CO2. Cu2O nanospheres with a uniform size of ∼180 nm were initially synthesized. Thereafter, Cu2O was used as a sacrificial template to prepare a series of Ag/Cu2O composites through galvanic replacement. By varying the Ag/Cu atomic ratio, Ag0.125/Cu2O, having a hierarchical, flower-like nanostructure with intersecting Ag nanoflakes encompassing an inner Cu2O sphere, was prepared. The as-prepared Agx/Cu2O samples presented higher Faradaic efficiencies (FE) for CO and relatively suppressed H2 evolution than the parent Cu2O nanospheres due to the combination of Ag with Cu2O in the former. Notably, the highest CO evolution rate was achieved with Ag0.125/Cu2O due to the larger electroactive surface area furnished by the hierarchical structure. The same hierarchical flower-like structure was also obtained for the Au0.6/Cu2O composite, where the FECO (10%) was even higher than that of Ag0.125/Cu2O. Importantly, the results reveal that Ag0.125/Cu2O and Au0.6/Cu2O both exhibit remarkably improved stability relative to Cu2O. This study presents a facile method of developing hierarchical metal-oxide composites as efficient and stable electrocatalysts for the electrochemical reduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Z, Li P, Liu G, Zheng B, Yuan H, Xiao D. Enhancing catalytic formaldehyde oxidation on CuO-Ag2O nanowires for gas sensing and hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14736–14743

    Article  CAS  Google Scholar 

  2. Park J, Liu J, Peng H, Figueroa-Cosme L, Miao S, Choi S, Bao S, Yang X, Xia Y. Coating Pt-Ni octahedra with ultrathin Pt shells to enhance the durability without compromising the activity toward oxygen reduction. ChemSusChem, 2016, 9(16): 2209–2215

    Article  CAS  Google Scholar 

  3. Liu H, Koenigsmann C, Adzic R R, Wong S S. Probing ultrathin one-dimensional Pd-Ni nanostructures as oxygen reduction reaction catalysts. ACS Catalysis, 2014, 4(8): 2544–2555

    Article  CAS  Google Scholar 

  4. Wang Y, Zhang J. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting. Frontiers of Chemical Science and Engineering, 2018, 12(4): 838–854

    Article  CAS  Google Scholar 

  5. Qu X, Yang R, Tong F, Zhao Y, Wang M. Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties. Powder Technology, 2018, 330: 259–265

    Article  CAS  Google Scholar 

  6. Su Y, Guo H, Wang Z, Long Y, Li W, Tu Y. Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sensors and Actuators. B, Chemical, 2018, 255: 2510–2519

    Article  CAS  Google Scholar 

  7. Pang M, Wang Q, Zeng H C. Self-Generated etchant for synthetic sculpturing of Cu2O-Au, Cu2O@Au, Au/Cu2O, and 3D-Au Nanostructures. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(46): 14605–14609

    CAS  Google Scholar 

  8. Rodrigues T S, Da Silva A G M, Alves R S, de Freitas I C, Oliveira D C, Camargo P H C. Controlling reduction kinetics in the galvanic replacement involving metal oxides templates: Elucidating the formation of bimetallic bowls, rattles, and dendrites from Cu2O Spheres. Particle & Particle Systems Characterization, 2018, 35(5): 1700175–1700184

    Article  Google Scholar 

  9. Zhu H, Du M, Yu D, Wang Y, Zou M, Xu C, Fu Y. Selective growth of Au nanograins on specific positions (tips, edges and facets) of Cu2O octahedrons to form Cu2O-Au hierarchical heterostructures. Dalton Transactions (Cambridge, England), 2012, 41(45): 13795–13799

    Article  CAS  Google Scholar 

  10. Polavarapu L, Zanaga D, Altantzis T, Rodal-Cedeira S, Pastoriza-Santos I, Pérez-Juste J, Bals S, Liz-Marzán L M. Galvanic replacement coupled to seeded growth as a route for shape-controlled synthesis of plasmonic nanorattles. Journal of the American Chemical Society, 2016, 138(36): 11453–11456

    Article  CAS  Google Scholar 

  11. Zhu H, Du M L, Yu D L, Wang Y, Wang L N, Zou M L, Zhang M, Fu Y. A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu2O-Au hierarchical heterostructures with a series of morphological evolutions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(3): 919–929

    Article  CAS  Google Scholar 

  12. Zhang Y, Zhou X, Zhao Y, Liu Z, Ma D, Chen S, Zhu G, Li X. One-step solvothermal synthesis of interlaced nanoflake-assembled flower-like hierarchical Ag/Cu2O composite microspheres with enhanced visible light photocatalytic properties. Royal Society of Chemistry Advances, 2017, 7(12): 6957–6965

    CAS  Google Scholar 

  13. Wang J, Wang H, Han Z, Han J. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering, 2015, 9(1): 57–63

    Article  CAS  Google Scholar 

  14. Song G, Wu X, Xin F, Yin X. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Frontiers of Chemical Science and Engineering, 2017, 11(2): 197–204

    Article  CAS  Google Scholar 

  15. Xie H, Wang J, Ithisuphalap K, Wu G, Li Q. Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. Journal of Energy Chemistry, 2017, 26(6): 1039–1049

    Article  Google Scholar 

  16. Qin T, Qian Y, Zhang F, Lin B. Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chinese Chemical Letters, 2019, 30(2): 314–318

    Article  CAS  Google Scholar 

  17. He J, Johnson N J J, Huang A, Berlinguette C P. Electrocatalytic alloys for CO2 reduction. ChemSusChem, 2018, 11(1): 48–57

    Article  CAS  Google Scholar 

  18. Singh S, Gautam R K, Malik K, Verma A. Ag-Co bimetallic catalyst for electrochemical reduction of CO2 to value added products. Journal of CO2 Utilization, 2017, 18: 139–146

    Article  CAS  Google Scholar 

  19. Kim D, Resasco J, Yu Y, Asiri A M, Yang P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nature Communications, 2014, 5(1): 5948–5956

    Google Scholar 

  20. Yang J, Liu X, Cao H, Shi Y, Xie Y, Xiao J. Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic ozonation. Frontiers of Chemical Science and Engineering, 2019, 13(1): 185–191

    Article  CAS  Google Scholar 

  21. Zhang B, Zhang J. Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. Journal of Energy Chemistry, 2017, 26(6): 1050–1066

    Article  Google Scholar 

  22. Kim J, Woo H, Yun S, Jung H, Back S, Jung Y, Kim Y. Highly active and selective Au thin layer on Cu polycrystalline surface prepared by galvanic displacement for the electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2017, 213: 211–215

    Article  CAS  Google Scholar 

  23. Kuo M, Hsiao C, Chiu Y, Lai T, Fang M, Wu J, Chen J, Wu C, Wei K, Lin H, Hsu Y. Au@Cu2O core@shell nanocrystals as dual-functional catalysts for sustainable environmental applications. Applied Catalysis B: Environmental, 2019, 242: 499–506

    Article  CAS  Google Scholar 

  24. Lee S, Park G, Lee J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catalysis, 2017, 7(12): 8594–8604

    Article  CAS  Google Scholar 

  25. Jin W, Xu P, Xiong L, Jing Q, Zhang B, Sun K, Han X. SERS-active silver nanoparticle assemblies on branched Cu2O crystals through controlled galvanic replacement. Royal Society of Chemistry Advances, 2014, 4(96): 53543–53546

    CAS  Google Scholar 

  26. Chen S, Liu P, Su K, Li X, Qin Z, Xu W, Chen J, Li C, Qiu J. Electrochemical aptasensor for thrombin using co-catalysis of hemin/Gquadruplex DNAzyme and octahedral Cu2O-Au nanocomposites for signal amplification. Biosensors & Bioelectronics, 2018, 99: 338–345

    Article  CAS  Google Scholar 

  27. Dai D, Liu H, Ma H, Huang Z, Gu C, Zhang M. In-situ synthesis of Cu2O-Au nanocomposites as nanozyme for colorimetric determination of hydrogen peroxide. Journal of Alloys and Compounds, 2018, 747: 676–683

    Article  CAS  Google Scholar 

  28. Luo H, Zhou J, Zhong H, Zhou L, Jia Z, Tan X. Polyhedron Cu2O@Ag composite microstructures: Synthesis, mechanism analysis and structure dependent SERS properties. Royal Society of Chemistry Advances, 2016, 6(101): 99105–99113

    CAS  Google Scholar 

  29. Kandula S, Jeevanandam P. Synthesis of Cu2O@Ag polyhedral core-shell nanoparticles by a thermal decomposition approach for catalytic applications. European Journal of Inorganic Chemistry, 2016, 2016(10): 1548–1557

    Article  CAS  Google Scholar 

  30. Wang Y, Gao T, Wang K, Wu X, Shi X, Liu Y, Lou S, Zhou S. Template-assisted synthesis of uniform nanosheet-assembled silver hollow microcubes. Nanoscale, 2012, 4(22): 7121 -7126

    Article  CAS  Google Scholar 

  31. Biesinger M C, Lau L W M, Gerson A R, Smart R S C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010, 257(3): 887–898

    Article  CAS  Google Scholar 

  32. Li C W, Kanan M W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. Journal of the American Chemical Society, 2012, 134(17): 7231–7234

    Article  CAS  Google Scholar 

  33. Raciti D, Livi K J, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Letters, 2015, 15(10): 6829–6835

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Analysis and Test Center of Tianjin University for providing XRD, SEM, and TEM characterization. We also acknowledge the National Natural Science Foundation of China (Grant Nos. 21576204 and 21206117) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Electronic Supplementary Material

11705_2019_1854_MOESM1_ESM.pdf

Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Zhang, S., Li, M. et al. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2. Front. Chem. Sci. Eng. 14, 813–823 (2020). https://doi.org/10.1007/s11705-019-1854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1854-8

Keywords

Navigation