Skip to main content
Log in

Towards an integrated modeling of the plasma-solid interface

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Solids facing a plasma are a common situation in many astrophysical systems and laboratory setups. Moreover, many plasma technology applications rely on the control of the plasma-surface interaction, i.e., of the particle, momentum and energy fluxes across the plasma-solid interface. However, presently often a fundamental understanding of them is missing, so most technological applications are being developed via trial and error. The reason is that the physical processes at the interface of a low-temperature plasma and a solid are extremely complex, involving a large number of elementary processes in the plasma, in the solid as well as fluxes across the interface. An accurate theoretical treatment of these processes is very difficult due to the vastly different system properties on both sides of the interface: Quantum versus classical behavior of electrons in the solid and plasma, respectively; as well as the dramatically differing electron densities, length and time scales. Moreover, often the system is far from equilibrium. In the majority of plasma simulations surface processes are either neglected or treated via phenomenological parameters such as sticking coefficients, sputter rates or secondary electron emission coefficients. However, those parameters are known only in some cases and with very limited accuracy. Similarly, while surface physics simulations have often studied the impact of single ions or neutrals, so far, the influence of a plasma medium and correlations between successive impacts have not been taken into account. Such an approach, necessarily neglects the mutual influences between plasma and solid surface and cannot have predictive power.

In this paper we discuss in some detail the physical processes of the plasma-solid interface which brings us to the necessity of coupled plasma-solid simulations. We briefly summarize relevant theoretical methods from solid state and surface physics that are suitable to contribute to such an approach and identify four methods. The first are mesoscopic simulations such as kinetic Monte Carlo and molecular dynamics that are able to treat complex processes on large scales but neglect electronic effects. The second are quantum kinetic methods based on the quantum Boltzmann equation that give access to a more accurate treatment of surface processes using simplifying models for the solid. The third approach are ab initio simulations of surface process that are based on density functional theory (DFT) and time-dependent DFT. The fourths are nonequilibrium Green functions that able to treat correlation effects in the material and at the interface. The price for the increased quality is a dramatic increase of computational effort and a restriction to short time and length scales. We conclude that, presently, none of the four methods is capable of providing a complete picture of the processes at the interface. Instead, each of them provides complementary information, and we discuss possible combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skiff F, Wurtele J. Plasma: At the Frontier of Science Discovery. Technical Report, U.S. Department of Energy, Office of Sciences, 2017

    Google Scholar 

  2. Meyyappan M. Plasma nanotechnology: Past, present and future. Journal of Physics. D, Applied Physics, 2011, 44(17): 174002

    Article  CAS  Google Scholar 

  3. Ostrikov K, Neyts E C, Meyyappan M. Plasma nanoscience: From nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62(2): 113–224

    Article  CAS  Google Scholar 

  4. Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Physical Review Letters, 2006, 97(21): 216803

    Article  CAS  PubMed  Google Scholar 

  5. Prezzi D, Varsano D, Ruini A, Marini A, Molinari E. Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review. B, 2008, 77(4): 041404

    Article  CAS  Google Scholar 

  6. Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P, et al. The 2017 plasma roadmap: Low temperature plasma science and technology. Journal of Physics. D, Applied Physics, 2017, 50(32): 323001

    Article  CAS  Google Scholar 

  7. Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science & Technology, 2005, 14(4): 722–733

    Article  CAS  Google Scholar 

  8. Donko Z, Dyatko N. First-principles particle simulation and Boltzmann equation analysis of negative differential conductivity and transient negative mobility effects in xenon. European Physical Journal D, 2016, 70(6): 135

    Article  CAS  Google Scholar 

  9. Teunissen J, Ebert U. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures. Plasma Sources Science & Technology, 2016, 25(4): 044005

    Article  CAS  Google Scholar 

  10. Becker M M, Kählert H, Sun A, Bonitz M, Loffhagen D. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges. Plasma Sources Science & Technology, 2017, 26(4): 044001

    Article  CAS  Google Scholar 

  11. Derzsi A, Korolov I, Schüngel E, Donkό Z, Schulze J. Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas. Plasma Sources Science & Technology, 2015, 24(3): 034002

    Article  CAS  Google Scholar 

  12. Phelps A V, Petrović Z L. Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons. Plasma Sources Science & Technology, 1999, 8(3): R21–R44

    Article  CAS  Google Scholar 

  13. Brault P. Multiscale molecular dynamics simulation of plasma processing: Application to plasma sputtering. Frontiers in Physics, 2018, 6: 59

    Article  Google Scholar 

  14. Zhao S, Kang W, Xue J, Zhang X, Zhang P. Comparison of electronic energy loss in graphene and BN sheet by means of time-dependent density functional theory. Journal of Physics Condensed Matter, 2015, 27(2): 025401

    Article  CAS  PubMed  Google Scholar 

  15. Balzer K, Schlünzen N, Bonitz M. Stopping dynamics of ions passing through correlated honeycomb clusters. Physical Review. B, 2016, 94(24): 245118

    Article  Google Scholar 

  16. Graves D B, Brault P. Molecular dynamics for low temperature plasma—surface interaction studies. Journal of Physics. D, Applied Physics, 2009, 42(19): 194011

    Article  CAS  Google Scholar 

  17. Neyts E C, Brault P. Molecular dynamics simulations for plasma-surface interactions. Plasma Processes and Polymers, 2017, 14 (12): 1600145

    Article  CAS  Google Scholar 

  18. Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D. Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. Physical Review Letters, 2013, 111(7): 075002

    Article  CAS  PubMed  Google Scholar 

  19. Bronold F X, Fehske H. Absorption of an electron by a dielectric wall. Physical Review Letters, 2015, 115(22): 225001

    Article  CAS  PubMed  Google Scholar 

  20. Sun A, Becker M M, Loffhagen D. PIC/MCC simulation of capacitively coupled discharges in helium: Boundary effects. Plasma Sources Science & Technology, 2018, 27(5): 054002

    Article  CAS  Google Scholar 

  21. Li Y, Go D B. Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions. Applied Physics Letters, 2013, 103(23): 234104

    Article  CAS  Google Scholar 

  22. Helmholtz H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierischelektrischen Versuche. Annalen der Physik, 1853, 165(6): 211–233 (in German)

    Article  Google Scholar 

  23. Heinisch R L, Bronold F X, Fehske H. Electron surface layer at the interface of a plasma and a dielectric wall. Physical Review. B, 2012, 85(7): 075323

    Article  CAS  Google Scholar 

  24. Onida G, Reining L, Rubio A. Electronic excitations: Density-functional versus many-body Green’s-function approaches. Reviews of Modern Physics, 2002, 74(2): 601–659

    Article  CAS  Google Scholar 

  25. Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 2006, 78(3): 865–951

    Article  CAS  Google Scholar 

  26. Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Quantum monte carlo simulations of solids. Reviews of Modern Physics, 2001, 73 (1): 33–83

    Article  CAS  Google Scholar 

  27. Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions. Physics Reports, 2018, 744: 1–86

    Article  CAS  Google Scholar 

  28. Abraham J W. Formation of metal-polymer nanocomposites by plasma-based deposition methods: Kinetic Monte Carlo and molecular dynamics simulations. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2018

    Google Scholar 

  29. Daniil M, Carlos T, Vasco G. Deterministic and Monte Carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 2016, 14(1–2): 1600175

    Google Scholar 

  30. Guerra V, Loureiro J. Dynamical Monte Carlo simulation of surface atomic recombination. Plasma Sources Science & Technology, 2004, 13(1): 85–94

    Article  CAS  Google Scholar 

  31. Abraham J W, Kongsuwan N, Strunskus T, Faupel F, Bonitz M. Simulation of nanocolumn formation in a plasma environment. Journal of Applied Physics, 2015, 117(1): 014305

    Article  CAS  Google Scholar 

  32. Fujioka K. Kinetic Monte Carlo simulations of cluster growth in magnetron plasmas. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2015

    Google Scholar 

  33. Polonskyi O, Ahadi A M, Peter T, Fujioka K, Abraham J W, Vasiliauskaite E, Hinz A, Strunskus T, Wolf S, Bonitz M, et al. Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. European Physical Journal D, 2018, 72(5): 93

    Article  CAS  Google Scholar 

  34. Rosenthal L. Monte Carlo simulations of metal-polymer nanocomposite formation. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2013

    Google Scholar 

  35. Runge E, Gross E K U. Density-functional theory for time-dependent systems. Physical Review Letters, 1984, 52(12): 997–1000

    Article  CAS  Google Scholar 

  36. Balzer K, Bonitz M. Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems. Berlin: Springer, 2013

    Book  Google Scholar 

  37. Schlünzen N, Bonitz M. Nonequilibrium Greenfunctions approach to strongly correlated fermions in lattice systems. Contributions to Plasma Physics, 2016, 56(1): 5–91

    Article  CAS  Google Scholar 

  38. Marini A, Hogan C, Grüning M, Varsano D. Yambo: An ab initio tool for excited state calculations. Computer Physics Communications, 2009, 180(8): 1392–1403

    Article  CAS  Google Scholar 

  39. Jürg H. Car—Parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2(4): 604–612

    Article  CAS  Google Scholar 

  40. Gross A. Theoretical Surface Science. 2nd ed. Berlin: Springer, 2009

    Book  Google Scholar 

  41. Bonitz M, Lopez J, Becker K, Thomsen H, eds. Complex plasmas: Scientific Challenges and Technological Opportunities. Berlin: Springer, 2014

    Google Scholar 

  42. Ott T, Bonitz M. Diffusion in a strongly coupled magnetized plasma. Physical Review Letters, 2011, 107(13): 135003

    Article  CAS  PubMed  Google Scholar 

  43. Abraham J W, Strunskus T, Faupel F, Bonitz M. Molecular dynamics simulation of gold cluster growth during sputter deposition. Journal of Applied Physics, 2016, 119(18): 185301

    Article  CAS  Google Scholar 

  44. Nakano A, Kalia R K, Nomura K, Sharma A, Vashishta P, Shimojo F, van Duin A C T, Goddard W A, Biswas R, Srivastava D, et al. De novo ultrascale atomistic simulations on high-end parallel supercomputers. International Journal of High Performance Computing Applications, 2008, 22(1): 113–128

    Article  Google Scholar 

  45. Piana S, Lindorff-Larsen K, Shaw D E. Atomic-level description of ubiquitin folding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5915–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Voter A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical Review Letters, 1997, 78(20): 3908–3911

    Article  CAS  Google Scholar 

  47. Laio A, Parrinello M. Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12562–12566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sørensen M R, Voter A F. Temperature-accelerated dynamics for simulation of infrequent events. Journal of Chemical Physics, 2000, 112(21): 9599–9606

    Article  Google Scholar 

  49. Bal K M, Neyts E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554

    Article  CAS  PubMed  Google Scholar 

  50. Bonitz M, Filinov A, Abraham J W, Loffhagen D. Extending first principle plasma-surface simulations to experimentally relevant scales. Plasma Sources Science & Technology, 2018, 27(6): 064005

    Article  CAS  Google Scholar 

  51. Abraham J W, Bonitz M. Molecular dynamics simulation of Ag-Cu cluster growth on a thin polymer film. Contributions to Plasma Physics, 2018, 58(2–3): 164–173

    Article  CAS  Google Scholar 

  52. Franke A, Pehlke E. Diffusion of 1,4-butanedithiol on Au(100) (1x1): A DFT-based master-equation approach. Physical Review. B, 2010, 82(20): 205423

    Article  CAS  Google Scholar 

  53. Filinov A, Bonitz M, Loffhagen D. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach. Plasma Sources Science & Technology, 2018, 27(6): 064003

    Article  CAS  Google Scholar 

  54. Schwartzkopf M, Santoro G, Brett C J, Rothkirch A, Polonskyi O, Hinz A, Metwalli E, Yao Y, Strunskus T, Faupel F, et al. Real-time monitoring of morphology and optical properties during sputter deposition for tailoring metal-polymer interfaces. ACS Applied Materials & Interfaces, 2015, 7(24): 13547–13556

    Article  CAS  Google Scholar 

  55. Abraham J W, Hinz A, Strunskus T, Faupel F, Bonitz M. Formation of polymer-based nanoparticles and nanocomposites by plasma-assisted deposition methods. European Physical Journal D, 2018, 72(5): 92

    Article  CAS  Google Scholar 

  56. Bonitz M. Quantum Kinetic Theory. 2nd ed. Berlin: Springer, 2016

    Book  Google Scholar 

  57. Filinov A, Bonitz M, Loffhagen D. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface. Plasma Sources Science & Technology, 2018, 27(6): 064002

    Article  CAS  Google Scholar 

  58. Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. New York: Wiley-Interscience, 2005

    Book  Google Scholar 

  59. Rabalais J W. Low Energy Ion-surface Interaction. New York: Wiley and Sons, 1994

    Google Scholar 

  60. Winter H. Collision of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582

    Article  CAS  Google Scholar 

  61. Winter H P, Burgdörfer J. Slow Heavy-particle Induced Electron Emission from Solid Surfaces. Berlin: Springer, 2007

    Google Scholar 

  62. Daksha M, Berger B, Schuengel E, Korolov I, Derzsi A, Koepke M, Donko Z, Schulze J. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas. Journal of Physics. D, Applied Physics, 2016, 49(23): 234001

    Article  CAS  Google Scholar 

  63. Marcak A, Corbella C, de los Arcos T, von Keudell A. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor. Review of Scientific Instruments, 2015, 86(10): 106102

    Article  CAS  PubMed  Google Scholar 

  64. More W, Merino J, Monreal R, Pou P, Flores F. Role of energy-level shifts on auger neutralization processes: A calculation beyond the image potential. Physical Review. B, 1998, 58(11): 7385–7390

    Article  CAS  Google Scholar 

  65. Newns D M, Makoshi K, Brako R, van Wunnik J N M. Charge transfer in inelastic ion and atom-surface collisions. Physica Scripta, 1983, T6: 5–14

    Article  CAS  Google Scholar 

  66. Yoshimori A, Makoshi K. Time-dependent Newns-Anderson model. Progress in Surface Science, 1986, 21(3): 251–294

    Article  CAS  Google Scholar 

  67. Los J, Geerlings J J C. Charge exchange in atom-surface collisions. Physics Reports, 1990, 190(3): 133–190

    Article  CAS  Google Scholar 

  68. Pamperin M, Bronold F X, Fehske H. Ion-induced secondary electron emission from metal surfaces. Plasma Sources Science & Technology, 2018, 27(8): 084003

    Article  CAS  Google Scholar 

  69. Wang N P, García E A, Monreal R, Flores F, Goldberg E C, Brongersma H H, Bauer P. Low-energy ion neutralization at surfaces: Resonant and auger processes. Physical Review A., 2001, 64(1): 012901

    Article  CAS  Google Scholar 

  70. Valdés D, Goldberg E C, Blanco J M, Monreal R C. Linear combination of atomic orbitals calculation of the auger neutralization rate of He+ on Al(111), (100), and (110) surfaces. Physical Review. B, 2005, 71(24): 245417

    Article  CAS  Google Scholar 

  71. Marbach J, Bronold F X, Fehske H. Resonant charge transfer at dielectric surfaces. European Physical Journal D, 2012, 66(4): 106

    Article  CAS  Google Scholar 

  72. Marbach J, Bronold F X, Fehske H. Pseudoparticle approach for charge-transferring molecule-surface collisions. Physical Review. B, 2012, 86(11): 115417

    Article  CAS  Google Scholar 

  73. Iglesias-García A, García E A, Goldberg E C. Role of He excited configurations in the neutralization of He+ ions colliding with a HOPG surface. Physical Review. B, 2013, 87(7): 075434

    Article  CAS  Google Scholar 

  74. Iglesias-García A, García E A, Goldberg E C. Importance of considering helium excited states in He+ scattering by aluminum surfaces. Physical Review. B, 2014, 90(19): 195416

    Article  CAS  Google Scholar 

  75. Pamperin M, Bronold F X, Fehske H. Many-body theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440

    Article  CAS  Google Scholar 

  76. Pamperin M, Bronold F X, Fehske H. Mixed-valence correlations in charge-transferring atom—surface collisions. Physica Scripta, 2015, T165: 014008

    Article  CAS  Google Scholar 

  77. Gadzuk J W. Theory of atom-metal interactions I. Alkali atom adsorption. Surface Science, 1967, 6(2): 133–158

    CAS  Google Scholar 

  78. Gadzuk J W. Theory of atom-metal interactions II. One-electron transition matrix elements. Surface Science, 1967, 6(2): 159–170

    Article  CAS  Google Scholar 

  79. Propst F M. Energy distribution of electrons ejected from tungsten by He+. Physical Review, 1963, 129(1): 7–11

    Article  CAS  Google Scholar 

  80. Penn D R, Apell P. Theory of spin-polarized metastable-atomdeexcitation spectroscopy: Ni-He. Physical Review. B, 1990, 41(6): 3303–3315

    Article  CAS  Google Scholar 

  81. Langreth D C, Nordlander P. Derivation of a master equation for charge-transfer processes in atom-surface collisions. Physical Review. B, 1991, 43(4): 2541–2557

    Article  CAS  Google Scholar 

  82. Shao H, Langreth D C, Nordlander P. Many-body theory for charge transfer in atom-surface collisions. Physical Review. B, 1994, 49(19): 13929–13947

    Article  CAS  Google Scholar 

  83. Shao H, Langreth D C, Nordlander P. Theoretical description of charge transfer in atom-surface collisions. In Rabalais J W, ed. Low Energy Ion-surface Interaction. New York: Wiley and Sons, 1994, 117

    Google Scholar 

  84. Marx D, Hutter J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge: Cambridge University Press, 2009

    Book  Google Scholar 

  85. Hafner J. Ab initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry, 2008, 29(13): 2044–2078

    Article  CAS  PubMed  Google Scholar 

  86. Groß A. Ab initio molecular dynamics simulations of the O2/Pt (111) interaction. Catalysis Today, 2016, 260: 60–65

    Article  CAS  Google Scholar 

  87. Kühne T D. Second generation Car-Parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2014, 4(4): 391–406

    Article  CAS  Google Scholar 

  88. Baer M. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. New-York: Wiley-Interscience, 2006

    Book  Google Scholar 

  89. Nosé S. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519

    Article  Google Scholar 

  90. Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985

    Article  CAS  Google Scholar 

  91. Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113 (22): 9901–9904

    Article  CAS  Google Scholar 

  92. Vineyard G H. Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957, 3 (1): 121–127

    Article  CAS  Google Scholar 

  93. Laio A, Gervasio F L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 2008, 71(12): 126601

    Article  CAS  Google Scholar 

  94. Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004

    Book  Google Scholar 

  95. Burke K. Perspective on density functional theory. Journal of Chemical Physics, 2012, 136(15): 150901

    Article  CAS  PubMed  Google Scholar 

  96. Becke A D. Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics, 2014, 140 (18): 18A301

    Article  CAS  PubMed  Google Scholar 

  97. Yu H S, Li S L, Truhlar D G. Perspective: Kohn-Sham density-functional theory descending a staircase. Journal of Chemical Physics, 2016, 145(13): 130901

    Article  CAS  PubMed  Google Scholar 

  98. Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871

    Article  Google Scholar 

  99. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133–A1138

    Article  Google Scholar 

  100. Klimes J, Michaelides A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. Journal of Chemical Physics, 2012, 137(12): 120901

    Article  CAS  PubMed  Google Scholar 

  101. Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review. B, 1992, 46(11): 6671–6687

    Article  CAS  Google Scholar 

  102. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865–3868

    Article  CAS  PubMed  Google Scholar 

  103. Tao J, Perdew J P, Staroverov V N, Scuseria G E. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Physical Review Letters, 2003, 91(14): 146401

    Article  CAS  PubMed  Google Scholar 

  104. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50

    Article  CAS  Google Scholar 

  105. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review. B, 1993, 47(1): 558–561

    Article  CAS  Google Scholar 

  106. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review. B, 1994, 49(20): 14251–14269

    Article  CAS  Google Scholar 

  107. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review. B, 1996, 54(16): 11169–11186

    Article  CAS  Google Scholar 

  108. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 2009, 21(39): 395502

    Article  PubMed  Google Scholar 

  109. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, et al. Advanced capabilities for materials modelling with quantum espresso. Journal of Physics Condensed Matter, 2017, 29(46): 465901

    Article  CAS  PubMed  Google Scholar 

  110. Mattsson A E, Schultz P A, Desjarlais M P, Mattsson T R, Leung K. Designing meaningful density functional theory calculations in material science—a primer. Modelling and Simulation in Materials Science and Engineering, 2005, 13(1): R1–R31

    Article  CAS  Google Scholar 

  111. Hamann D R. Generalized norm-conserving pseudopotentials. Physical Review. B, 1989, 40(5): 2980–2987

    Article  CAS  Google Scholar 

  112. Trouiller N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Physical Review. B, 1991, 43(3): 1993–2006

    Article  Google Scholar 

  113. Fuchs M, Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 1999, 119 (1): 67–98

    Article  CAS  Google Scholar 

  114. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review. B, 1990, 41(11): 7892–7895

    Article  CAS  Google Scholar 

  115. Blöchl P E. Projector augmented-wave method. Physical Review. B, 1994, 50(24): 17953–17979

    Article  Google Scholar 

  116. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review. B, 1999, 59 (3): 1758–1775

    Article  CAS  Google Scholar 

  117. Modinos A. Resonance charge transfer in atom-surface scattering. Progress in Surface Science, 1987, 26(1): 19–46

    Article  CAS  Google Scholar 

  118. Brako R, Newns D M. Theory of electronic processes in atom scattering from surfaces. Reports on Progress in Physics, 1989, 52 (6): 655–697

    Article  CAS  Google Scholar 

  119. Kimmel G A, Cooper B H. Dynamics of resonant charge transfer in low-energy alkali-metal-ion scattering. Physical Review. B, 1993, 48(16): 12164–12177

    Article  CAS  Google Scholar 

  120. Winter H. Collisions of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582

    Article  CAS  Google Scholar 

  121. Race C P, Mason D R, Finnis M W, Foulkes W M C, Horsfield A P, Sutton A P. The treatment of electronic excitations in atomistic models of radiation damage in metals. Reports on Progress in Physics, 2010, 73(11): 116501

    Article  CAS  Google Scholar 

  122. Wucher A, Duvenbeck A. Kinetic excitation of metallic solids: Progress towards a microscopic model. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2011, 269(14): 1655–1660

    Article  CAS  Google Scholar 

  123. Lindenblatt M, Pehlke E, Duvenbeck A, Rethfeld B, Wucher A. Kinetic excitation of solids: The concept of electronic friction. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2006, 246(2): 333–339

    Article  CAS  Google Scholar 

  124. Nienhaus H. Electronic excitations by chemical reactions on metal surfaces. Surface Science Reports, 2002, 45(1): 1–78

    Article  CAS  Google Scholar 

  125. Diesing D, Hasselbrink E. Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal-insulator-metal and similar devices. Chemical Society Reviews, 2016, 45(13): 3747–3755

    Article  CAS  PubMed  Google Scholar 

  126. Bünermann O, Jiang H, Dorenkamp Y, Kandratsenka A, Janke S M, Auerbach D J, Wodtke A M. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science, 2015, 350(6266): 1346–1349

    Article  CAS  PubMed  Google Scholar 

  127. Wodtke A M. Electronically non-adiabatic influences in surface chemistry and dynamics. Chemical Society Reviews, 2016, 45 (13): 3641–3657

    Article  CAS  PubMed  Google Scholar 

  128. Rittmeyer S P, Meyer J, Juaristi J I, Reuter K. Electronic friction-based vibrational lifetimes of molecular adsorbates: Beyond the independent-atom approximation. Physical Review Letters, 2015, 115(4): 046102

    Article  CAS  PubMed  Google Scholar 

  129. Rittmeyer S P, Bukas V J, Reuter K. Energy dissipation at metal surfaces. Advances in Physics: X, 2018, 3(1): 1381574

    Google Scholar 

  130. Alducin M, Muiño R D, Juaristi J I. Non-adiabatic effects in elementary reaction processes at metal surfaces. Progress in Surface Science, 2017, 92(4): 317–340

    Article  CAS  Google Scholar 

  131. Janke S M, Auerbach D J, Wodtke A M, Kandratsenka A. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. Journal of Chemical Physics, 2015, 143(12): 124708

    Article  CAS  PubMed  Google Scholar 

  132. Kroes G J, Pavanello M, Blanco-Rey M, Alducin M, Auerbach D J. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111). Journal of Chemical Physics, 2014, 141(5): 054705

    Article  CAS  PubMed  Google Scholar 

  133. Monturet S, Saalfrank P. Role of electronic friction during the scattering of vibrationally excited nitric oxide molecules from Au (111). Physical Review. B, 2010, 82(7): 075404

    Article  CAS  Google Scholar 

  134. Mizielinski M S, Bird D M, Persson M, Holloway S. Electronic nonadiabatic effects in the adsorption of hydrogen atoms on metals. Journal of Chemical Physics, 2005, 122(8): 084710

    Article  CAS  Google Scholar 

  135. Mizielinski M S, Bird D M, Persson M, Holloway S. Spectrum of electronic excitations due to the adsorption of atoms on metal surfaces. Journal of Chemical Physics, 2007, 126(3): 034705

    Article  CAS  PubMed  Google Scholar 

  136. Mizielinski M S, Bird D M, Persson M, Holloway S. New-nsanderson model of chemicurrents in H/Cu and H/Ag. Surface Science, 2008, 602(14): 2617–2622

    Article  CAS  Google Scholar 

  137. Mizielinski M S, Bird D M. Accuracy of perturbation theory for nonadiabatic effects in adsorbate-surface dynamics. Journal of Chemical Physics, 2010, 132(18): 184704

    Article  CAS  Google Scholar 

  138. Bird D M, Mizielinski M S, Lindenblatt M, Pehlke E. Electronic excitation in atomic adsorption on metals: A comparison of ab initio and model calculations. Surface Science, 2008, 602(6): 1212–1216

    Article  CAS  Google Scholar 

  139. Lindenblatt M, van Heys J, Pehlke E. Molecular dynamics of nonadiabatic processes at surfaces: Chemisorption of H/Al(111). Surface Science, 2006, 600(18): 3624–3628

    Article  CAS  Google Scholar 

  140. Lindenblatt M, Pehlke E. Time-dependent density-functional molecular-dynamics study of the isotope effect in chemicurrents. Surface Science, 2006, 600(23): 5068–5073

    Article  CAS  Google Scholar 

  141. Lindenblatt M, Pehlke E. Ab initio simulation of the spin transition during chemisorption: H/Al(111). Physical Review Letters, 2006, 97(21): 216101

    Article  CAS  PubMed  Google Scholar 

  142. Grotemeyer M, Pehlke E. Electronic energy dissipation during scattering of vibrationally excited molecules at metal surfaces: Ab initio simulations for HCl/Al(111). Physical Review Letters, 2014, 112(4): 043201

    Article  CAS  PubMed  Google Scholar 

  143. Timmer M, Kratzer P. Electron-hole spectra created by adsorption on metals from density functional theory. Physical Review. B, 2009, 79(16): 165407

    Article  CAS  Google Scholar 

  144. Zhao S, Kang W, Xue J, Zhang X, Zhang P. H+ (D+,T+) beryllium collisions studied using time-dependent density functional theory. Physics Letters, 2015, 379(4): 319–326 (Part A)

    Article  CAS  Google Scholar 

  145. Moss C L, Isborn C M, Li X. Ehrenfest dynamics with a time-dependent density-functional-theory calculation of lifetimes and resonant widths of charge-transfer states of Li+ near an aluminum cluster surface. Physical Review A., 2009, 80(2): 024503

    Article  CAS  Google Scholar 

  146. Castro A, Isla M, Martínez J I, Alonso J A. Scattering of a proton with the Li4 cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory. Chemical Physics, 2012, 399: 130–134

    Article  CAS  Google Scholar 

  147. Krasheninnikov A V, Miyamoto Y, Tománek D. Role of electronic excitation in ion collisions with carbon nanostructures. Physical Review Letters, 2007, 99(1): 016104

    Article  CAS  PubMed  Google Scholar 

  148. Bubin S, Wang B, Pantelides S, Varga K. Simulation of high-energy ion collisions with graphene fragments. Physical Review. B, 2012, 85(23): 235435

    Article  CAS  Google Scholar 

  149. Ojanperä A, Krasheninnikov A V, Puska M. Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization. Physical Review. B, 2014, 89(3): 035120

    Article  CAS  Google Scholar 

  150. Wang Z, Li S S, Wang L W. Efficient real-time time-dependent density functional theory method and its application to collision of an ion with a 2D material. Physical Review Letters, 2015, 114(6): 063004

    Article  PubMed  Google Scholar 

  151. Yost D C, Yao Y, Kanai Y. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power. Physical Review. B, 2017, 96(11): 115134

    Article  Google Scholar 

  152. Schleife A, Kanai Y, Correa A A. Accurate atomistic first-principles calculations of electronic stopping. Physical Review. B, 2015, 91(1): 014306

    Article  CAS  Google Scholar 

  153. Correa A A, Kohanoff J, Artacho E, Sánchez-Portal D, Caro A. Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Physical Review Letters, 2012, 108(21): 213201

    Article  CAS  PubMed  Google Scholar 

  154. Zeb M A, Kohanoff J, Sánchez-Portal D, Arnau A, Juaristi J I, Artacho E. Electronic stopping power in gold: The role of d electrons and the H/He anomaly. Physical Review Letters, 2012, 108(22): 225504

    Article  CAS  PubMed  Google Scholar 

  155. Ullah R, Corsetti F, Sánchez-Portal D, Artacho E. Electronic stopping power in narrow band gap semiconductor from first principles. Physical Review. B, 2015, 91(12): 125203

    Article  CAS  Google Scholar 

  156. Time-dependent Density Functional Theory. Marques M A L, Ullrich C A, Nogueira F, Rubio A, Burke K, Gross E K U, eds. Berlin: Springer, 2006

    Google Scholar 

  157. Fundamentals of Time-Dependent Density Functional Theory. Marques M A L, Maitra N T, Nogueira F M S, Gross E K U, Rubio A, eds. Berlin: Springer, 2012

    Google Scholar 

  158. Ullrich C A. Time-Dependent Density-Functional Theory. Oxford: Oxford University Press, 2012

    Google Scholar 

  159. Ullrich C A, Yang Z H. A brief compendium of time-dependent density functional theory. Brazilian Journal of Physics, 2014, 44 (1): 154–158

    Article  Google Scholar 

  160. Maitra N T. Perspective: Fundamental aspects of time-dependent density functional theory. Journal of Chemical Physics, 2016, 144 (22): 220901

    Article  CAS  PubMed  Google Scholar 

  161. Runge E, Gross E K U. Density-functional theory for time-dependent systems. Physical Review Letters, 1984, 52(12): 997–1000

    Article  CAS  Google Scholar 

  162. Gross E K U, Kohn W. Local density-functional theory of frequency-dependent linear response. Physical Review Letters, 1985, 55(26): 2850–2852

    Article  CAS  PubMed  Google Scholar 

  163. Provorse M R, Isborn C M. Electron dynamics with real-time time-dependent density functional theory. International Journal of Quantum Chemistry, 2016, 116(10): 739–749

    Article  CAS  Google Scholar 

  164. Nagano R, Yabana K, Tazawa T, Abe Y. Time-dependent mean-field description for multiple charge transfer processes in Ar8+-Ar collisions. Physical Review A., 2000, 62(6): 062721

    Article  Google Scholar 

  165. Nazarov V U, Pitarke J M, Takada Y, Vignale G, Chang Y C. Including nonlocality in the exchange-correlation kernel from time-dependent current density functional theory: Application to the stopping power of electron liquids. Physical Review. B, 2007, 76(20): 205103

    Article  CAS  Google Scholar 

  166. Tully J C. Molecular dynamics with electronic transitions. Journal of Chemical Physics, 1990, 93(2): 1061–1071

    Article  CAS  Google Scholar 

  167. Shenvi N, Roy S, Tully J C. Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping. Journal of Chemical Physics, 2009, 130(17): 174107

    Article  CAS  PubMed  Google Scholar 

  168. Marques M A L, Castro A, Bertsch G F, Rubio A. Octopus: A first-principles tool for excited electron-ion dynamics. Computer Physics Communications, 2003, 151(1): 60–78

    Article  CAS  Google Scholar 

  169. Foglia N O, Morzan U N, Estrin D A, Scherlies D A, Lebrero M C G. Role of core electrons in quantum dynamics using TDDFT. Journal of Chemical Theory and Computation, 2017, 13(1): 77–85

    Article  CAS  PubMed  Google Scholar 

  170. Avendaño Franco G. Charge transfer processes in atomic collisions from first principles. Dissertation for the Doctoral Degree. Louvain-la-Neuve: Université Catholique de Louvain, 2013

    Google Scholar 

  171. German K A H, Weare C B, Yarmoff J A. Inner-shell promotions in low-energy Li+-Al collisions at clean and alkali-covered Al(100) surfaces. Physical Review. B, 1994, 50(19): 14452–14466

    Article  CAS  Google Scholar 

  172. Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A. Octopus: A tool for the application of time-dependent density functional theory. Physica Status Solidi. B, Basic Research, 2006, 243(11): 2465–2488

    Article  CAS  Google Scholar 

  173. Andrade X, Strubbe D, De Giovannini U, Larsen A H, Oliveira M J T, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J, et al. Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems. Physical Chemistry Chemical Physics, 2015, 17(47): 31371–31396

    Article  CAS  PubMed  Google Scholar 

  174. Shukri A A, Bruneval F, Reining L. Ab initio electronic stopping power of protons in bulk materials. Physical Review. B, 2016, 93 (3): 035128

    Article  CAS  Google Scholar 

  175. Markin S N, Primetzhofer D, Spitz M, Bauer P. Electronic stopping of low-energy H and He in Cu and Au investigated by time-offlight low-energy ion scattering. Physical Review. B, 2009, 80(20): 205105

    Article  CAS  Google Scholar 

  176. Mason D R, le Page J, Race C P, Foulkes W M C, Finnis M W, Sutton A P. Electronic damping of atomic dynamics in irradiation damage of metals. Journal of Physics Condensed Matter, 2007, 19 (43): 436209

    Article  CAS  Google Scholar 

  177. Grotemeyer M K. Ab initio Berechnungen zur Anregung von Elektronen-Loch-Paaren durch Molekülschwingungen am Beispiel von HCl auf Al(111). Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2016 (in German)

    Google Scholar 

  178. D’Agosta R, Di Ventra M. Foundations of stochastic time-dependent current-density functional theory for open quantum systems: Potential pitfalls and rigorous results. Physical Review. B, 2013, 87(15): 155129

    Article  CAS  Google Scholar 

  179. Ullrich C A. Time-dependent density-functional theory beyond the adiabatic approximation: Insights from a two-electron model system. Journal of Chemical Physics, 2006, 125(23): 234108

    Article  CAS  PubMed  Google Scholar 

  180. Kapoor V. Autoionization in time-dependent density-functional theory. Physical Review. A, 2016, 93(6): 063408

    Article  CAS  Google Scholar 

  181. Lorente N, Monreal R, Alducin M. Local theory of Auger neutralization for slow and compact ions interacting with metal surfaces. Physical Review A., 1994, 49(6): 4716–4725

    Article  CAS  Google Scholar 

  182. Monreal R C. Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces. Progress in Surface Science, 2014, 89(1): 80–125

    Article  CAS  Google Scholar 

  183. Balzer K, Rasmussen M, Schlünzen N, Joost J P, Bonitz M. Doublon formation by ions impacting a strongly correlated finite lattice system. Physical Review Letters, 2018, 121(26): 267602

    Article  CAS  PubMed  Google Scholar 

  184. Keldysh L. Diagram technique for nonequilibrium processes. Soviet Physics, JETP, 1965, 20(4): 1018–1026

    Google Scholar 

  185. Kadanoff L, Baym G. Quantum Statistical Mechanics. New York: Benjamin, 1962

    Google Scholar 

  186. Bonitz M, Kremp D. Kinetic energy relaxation and correlation time of nonequilibrium many-particle systems. Physics Letters, 1996, 212(1-2): 83–90 (Part A)

    Article  CAS  Google Scholar 

  187. Bonitz M, Kremp D, Scott D C, Binder R, Kraeft W D, Köhler H S. Numerical analysis of non-Markovian effects in charge-carrier scattering: One-time versus two-time kinetic equations. Journal of Physics Condensed Matter, 1996, 8(33): 6057–6071

    Article  CAS  Google Scholar 

  188. Bonitz M. Correlation time approximation in non-markovian kinetics. Physics Letters, 1996, 221(1–2): 85–93 (Part A)

    Article  CAS  Google Scholar 

  189. Kremp D, Bonitz M, Kraeft W, Schlanges M. Non-Markovian Boltzmann equation. Annals of Physics, 1997, 258(2): 320–359

    Article  CAS  Google Scholar 

  190. Danielewicz P. Quantum theory of nonequilibrium processes ii. Application to nuclear collisions. Annals of Physics, 1984, 152(2): 305–326

    CAS  Google Scholar 

  191. Köhler H S. Memory and correlation effects in nuclear collisions. Physical Review. C, 1995, 51(6): 3232–3239

    Article  Google Scholar 

  192. Bányai L, Thoai D B T, Reitsamer E, Haug H, Steinbach D, Wehner M U, Wegener M, Marschner T, Stolz W. Exciton-lophonon quantum kinetics: Evidence of memory effects in bulk gaas. Physical Review Letters, 1995, 75(11): 2188–2191

    Article  PubMed  Google Scholar 

  193. Kwong N, Bonitz M, Binder R, Köhler H. Semiconductor Kadanoff-Baym equations results for optically excited electron-hole plasmas semiconductor quantum wells. Physica Status Solidi. B, Basic Research, 1998, 206: 197

    Article  CAS  Google Scholar 

  194. Binder R, Köhler H S, Bonitz M, Kwong N. Green’s function description of momentum-orientation relaxation of photoexcited electron plasmas in semiconductors. Physical Review. B, 1997, 55 (8): 5110–5116

    Article  CAS  Google Scholar 

  195. Bonitz M, Balzer K, van Leeuwen R. Invariance of the Kohn center-of-mass mode in a conserving theory. Physical Review. B, 2007, 76(4): 045341

    Article  CAS  Google Scholar 

  196. Balzer K, Bonitz M, van Leeuwen R, Stan A, Dahlen N E. Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Physical Review. B, 2009, 79(24): 245306

    Article  CAS  Google Scholar 

  197. Kremp D, Bornath T, Bonitz M, Schlanges M. Quantum kinetic theory of plasmas in strong laser fields. Physical Review. E, 1999, 60(4): 4725–4732

    Article  CAS  Google Scholar 

  198. Bonitz M, Bornath T, Kremp D, Schlanges M, Kraeft W D. Quantum kinetic theory for laser plasmas. Dynamical screening in strong fields. Contributions to Plasma Physics, 1999, 39(4): 329–347

    Article  CAS  Google Scholar 

  199. Stefanucci G, van Leeuwen R. Nonequilibrium Many-body Theory of Quantum Systems. Cambridge: Cambridge University Press, 2013

    Book  Google Scholar 

  200. Balzer K, Bauch S, Bonitz M. Efficient grid-based method in nonequilibrium Green’s function calculations: Application to model atoms and molecules. Physical Review A., 2010, 81(2): 022510

    Article  CAS  Google Scholar 

  201. Balzer K, Bauch S, Bonitz M. Time-dependent second-order Born calculations for model atoms and molecules in strong laser fields. Physical Review A., 2010, 82(3): 033427

    Article  CAS  Google Scholar 

  202. Verdozzi C, Wacker A, Almbladh C O, Bonitz M. Progress in nonequilibrium Green’s functions (PNGF VI). Journal of Physics: Conference Series, 2016, 696(1): 011001

    Google Scholar 

  203. Schlünzen N, Hermanns S, Bonitz M, Verdozzi C. Dynamics of strongly correlated fermions: Ab initio results for two and three dimensions. Physical Review. B, 2016, 93(3): 035107

    Article  CAS  Google Scholar 

  204. Bonitz M, Scharnke M, Schlünzen N. Time-reversal invariance of quantum kinetic equations II: Density operator formalism. Contributions to Plasma Physics, 2018, 58(10): 58

    Article  Google Scholar 

  205. TRIM and SRIM code packages. Available at the website of srim.org (accessed March 11, 2019)

  206. Heese S. Dielectric function of graphene with yambo. Dissertation for the Bachelor Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2017

    Google Scholar 

  207. Bonitz M, Balzer K, Schlünzen N, Rodriguez Rasmussen M, Joost J P. Ion impact induced ultrafast electron dynamics in correlated materials and finite graphene clusters. Physica Status Solidi (B), 2019, 1800490

  208. Pamperin M, Bronold F X, Fehske H. Many-body theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440

    Article  CAS  Google Scholar 

  209. Brenig W. Theory of inelastic atom-surface scattering: Average energy loss and energy distribution. Zeitschrift für Physik B, Condensed Matter, 1979, 36(1): 81–87

    Article  CAS  Google Scholar 

  210. Bonitz M, Rosenthal L, Fujioka K, Zaporojtchenko V, Faupel F, Kersten H. Towards a particle based simulation of complex plasma driven nanocomposite formation. Contributions to Plasma Physics, 2012, 52(10): 890–898

    Article  CAS  Google Scholar 

  211. Brenig W, Pehlke E. Reaction dynamics of H2 on Si. Ab initio supported model calculations. Progress in Surface Science, 2008, 83(5): 263–336

    Article  CAS  Google Scholar 

  212. Bronold F X, Fehske H. Kinetic modeling of the electronic response of a plasma-facing solid. Journal of Physics. D, Applied Physics, 2017, 50(29): 294003

    Article  CAS  Google Scholar 

  213. Langmuir I, Mott-Smith H. Studies of electric discharges in gases at low pressure. General Electric Review, 1924, 27: 449

    CAS  Google Scholar 

  214. Robertson S. Sheaths in laboratory and space plasmas. Plasma Physics and Controlled Fusion, 2013, 55(9): 093001

    Article  Google Scholar 

  215. Brinkmann R P. From electron depletion to quasi-neutrality: The sheath-bulk transition in RF modulated discharges. Journal of Physics. D, Applied Physics, 2009, 42(19): 194009

    Article  CAS  Google Scholar 

  216. Franklin R N. The plasma-sheath boundary region. Journal of Physics. D, Applied Physics, 2003, 36(22): R309–R320

    Article  CAS  Google Scholar 

  217. Riemann K U. The Bohm criterion and sheath formation. Journal of Physics. D, Applied Physics, 1991, 24(4): 493–518

    Article  Google Scholar 

  218. Schwager L A, Birdsall C K. Collector and source sheaths of a finite ion temperature plasma. Physics of Fluids. B, Plasma Physics, 1990, 2(5): 1057–1068

    Article  Google Scholar 

  219. Campanell M D, Umansky M V. Strongly emitting surfaces unable to float below plasma potential. Physical Review Letters, 2016, 116 (8): 085003

    Article  CAS  PubMed  Google Scholar 

  220. Langendorf S, Walker M. Effect of secondary electron emission on the plasma sheath. Physics of Plasmas, 2015, 22(3): 033515

    Article  CAS  Google Scholar 

  221. Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D. Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. Physical Review Letters, 2013, 111(7): 075002

    Article  CAS  PubMed  Google Scholar 

  222. Sydorenko D, Kaganovich I D, Raitses Y, Smolyakov A. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. Physical Review Letters, 2009, 103(14): 145004

    Article  CAS  PubMed  Google Scholar 

  223. Taccogna F, Longo S, Capitelli M. Plasma-surface interaction model with secondary electron emission effects. Physics of Plasmas, 2004, 11(3): 1220–1228

    Article  CAS  Google Scholar 

  224. Hu P N, Ziering S. Collisionless theory of a plasma sheath near an electrode. Physics of Fluids, 1966, 9(11): 2168–2179

    Article  CAS  Google Scholar 

  225. Franklin R N. Plasma Phenomena in Gas Discharges. Oxford: Clarendon Press, 1976

    Google Scholar 

  226. Becker M M, Grubert G K, Loffhagen D. Boundary conditions for the electron kinetic equation using expansion techniques. European Physical Journal Applied Physics, 2010, 51(1): 11001

    Article  CAS  Google Scholar 

  227. Kushner M J. Modeling of microdischarge devices: Pyramidal structures. Journal of Applied Physics, 2004, 95(3): 846–859

    Article  CAS  Google Scholar 

  228. Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. Journal of Physics. D, Applied Physics, 2002, 35(8): 751–761

    Article  CAS  Google Scholar 

  229. Dussart R, Overzet L J, Lefaucheux P, Dufour T, Kulsreshath M, Mandra M A, Tillocher T, Aubry O, Dozias S, Ranson P, et al. Integrated micro-plasmas in silicon operating in helium. European Physical Journal D, 2010, 60(3): 601–608

    Article  Google Scholar 

  230. Kulsreshath M K, Schwaederle L, Overzet L J, Lefaucheux P, Ladroue J, Tillocher T, Aubry O, Woytasik M, Schelcher G, Dussart R. Study of dc micro-discharge arrays made in silicon using cmos compatible technology. Journal of Physics. D, Applied Physics, 2012, 45(28): 285202

    Article  CAS  Google Scholar 

  231. Eden J G, Park S J, Cho J H, Kim M H, Houlahan T J, Li B, Kim E S, Kim T L, Lee S K, Kim K S, et al. Plasma science and technology in the limit of the small: Microcavity plasmas and emerging applications. IEEE Transactions on Plasma Science, 2013, 41(4): 661–675

    Article  CAS  Google Scholar 

  232. Tchertchian P A, Wagner C J, Houlahan T J Jr, Li B, Sievers D J, Eden J G. Control of the interface between electron-hole and electron-ion plasmas: Hybrid semiconductor-gas phase devices as a gateway for plasma science. Contributions to Plasma Physics, 2011, 51(10): 889–905

    Article  CAS  Google Scholar 

  233. Ostrom N P, Eden J G. Microcavity plasma photodetectors: Photosensitivity, dynamic range, and the plasma-semiconductor interface. Applied Physics Letters, 2005, 87(14): 141101

    Article  CAS  Google Scholar 

  234. Sternovsky Z. The effect of ion-neutral collisions on the weakly collisional plasma-sheath and the reduction of the ion flux to the wall. Plasma Sources Science & Technology, 2005, 14(1): 32–35

    Article  Google Scholar 

  235. Riemann K U. Kinetic analysis of the collisional plasma-sheath transition. Journal of Physics. D, Applied Physics, 2003, 36(22): 2811–2820

    Article  CAS  Google Scholar 

  236. Sheridan T E, Goree J. Collisional plasma sheath model. Physics of Fluids. B, Plasma Physics, 1991, 3(10): 2796–2804

    Article  Google Scholar 

  237. Tsankov T V, Czarnetzki U. Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion. Plasma Sources Science & Technology, 2017, 26(5): 055003

    Article  Google Scholar 

  238. Lacroix D, Hermanns S, Hinz C M, Bonitz M. Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach. Physical Review. B, 2014, 90(12): 125112

    Article  CAS  Google Scholar 

  239. Hopjan M, Karlsson D, Ydman S, Verdozzi C, Almbladh C O. Merging features from Green’s functions and time dependent density functional theory: A route to the description of correlated materials out of equilibrium? Physical Review Letters, 2016, 116 (23): 236402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge many fruitful discussions with our colleagues in Kiel—in particular, M. Bauer, J. Benedikt, J. Golda, B. Hartke, H. Kersten, O. Magnussen, K. Rossnagel, J. Stettner, and T. Trottenberg—with whom the present concept has been developed. EP is grateful to L. Deuchler for insightful discussions concerning TDDFT-MD simulations. MB and KB are grateful to A. Marini and D. Sangalli for their support in using their AI-NEGF-code Yambo. MB is grateful to K. Becker, A. Bogaerts, P. Bruggeman, Z. Donko, J.G. Eden, U. Fantz, I. Kaganovich, M. Kushner, E. Neyts, G. Oehrlein, K. Ostrikov, and Y. Raitses for many stimulating remarks during presentation of early versions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bonitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonitz, M., Filinov, A., Abraham, JW. et al. Towards an integrated modeling of the plasma-solid interface. Front. Chem. Sci. Eng. 13, 201–237 (2019). https://doi.org/10.1007/s11705-019-1793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1793-4

Keywords

Navigation