Skip to main content
Log in

Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Aqueous solutions of methyldiethanolamine (MDEA) and piperazine (PZ) are commonly used solvent nowadays. In this work a thermodynamic analysis with the Electrolyte-NRTL model has been performed for systems composed of acidic gases and MDEA + PZ aqueous solution. ASPEN Plus® has been used for thermodynamic modeling. Values of binary interaction parameters for liquid phase activity coefficients have been estimated from regressions of experimental data. Moreover, the influence of the interactions between ion pairs and MDEA or PZ molecular species has been analyzed. The final aim is to obtain a reliable tool for design and simulation of absorption and stripping columns, fundamentals also in order to carry out energy saving studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kohl A L, Nielsen R. Gas Purification, 5th ed. Texas, USA: Gulf Publishing Company, Book Division, 1997

    Google Scholar 

  2. Nagy T, Mizsey P. Model verification and analysis of the CO2-MEA absorber-desorber system. International Journal of Greenhouse Gas Control, 2015, 39: 236–244

    Article  CAS  Google Scholar 

  3. Nagy T, Mizsey P. Effect of fossil fuels on the parameters of CO2 capture. Environmental Science & Technology, 2013, 47(15): 8948–8954

    CAS  Google Scholar 

  4. Svendsen H F, Hessen E T, Mejdell T. Carbon dioxide capture by absorption, challenges and possibilities. Chemical Engineering Journal, 2011, 171(3): 718–724

    Article  CAS  Google Scholar 

  5. Duke M C, Ladewig B, Smart S, Rudolph V, Diniz da Costa J C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2010, 4(2): 184–195

    Article  CAS  Google Scholar 

  6. Ravanchi M, Sahebdelfar S, Zangeneh F. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Frontiers of Chemical Science and Engineering, 2011, 5(2): 173–178

    Article  CAS  Google Scholar 

  7. Mumford K A, Wu Y, Smith K H, Stevens G W. Review of solvent based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125–141

    Article  CAS  Google Scholar 

  8. Zhang Y, Fan L, Zhang L, Chen H. Research progress in removal of trace carbon dioxide from closed spaces. Frontiers of Chemical Engineering in China, 2007, 1(3): 310–316

    Article  CAS  Google Scholar 

  9. Moioli S, Pellegrini L A, Picutti B, Vergani P. Improved rate-based modeling of H2S and CO2 removal by Methyldiethanolamine scrubbing. Industrial & Engineering Chemistry Research, 2013, 52(5): 2056–2065

    Article  CAS  Google Scholar 

  10. Rochelle G, Chen E, Freeman S, van Wagener D, Xu Q, Voice A. Aqueous piperazine as the new standard for CO2 capture technology. Chemical Engineering Journal, 2011, 171(3): 725–733

    Article  CAS  Google Scholar 

  11. Moioli S, Pellegrini L A. Physical properties of PZ solution used as a solvent for CO2 removal. Chemical Engineering Research & Design, 2015, 93: 720–726

    Article  CAS  Google Scholar 

  12. Langé S, Moioli S, Pellegrini L A. Vapor-liquid equilibrium and enthalpy of absorption of the CO2-MEA-H2O system. Chemical Engineering Transactions, 2015, 43: 1975–1980

    Google Scholar 

  13. Xu G W, Zhang C F, Qin S J, Gao W H, Liu H B. Gas-liquid equilibrium in a CO2-MDEA-H2O system and the effect of piperazine on it. Industrial & Engineering Chemistry Research, 1998, 37(4): 1473–1477

    Article  CAS  Google Scholar 

  14. Liu H B, Zhang C F, Xu G W. A study on equilibrium solubility for carbon dioxide in methyldiethanolamine-piperazine-water solution. Industrial & Engineering Chemistry Research, 1999, 38(10): 4032–4036

    Article  CAS  Google Scholar 

  15. Bishnoi S, Rochelle G T. Thermodynamics of piperazine/methyldiethanolamine/ water/carbon dioxide. Industrial & Engineering Chemistry Research, 2002, 41(3): 604–612

    Article  CAS  Google Scholar 

  16. Böttger A, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the high gas loading region. Journal of Chemical & Engineering Data, 2009, 54(6): 1905–1909

    Article  Google Scholar 

  17. Speyer D, Ermatchkov V, Maurer G. Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine in the low gas loading region. Journal of Chemical & Engineering Data, 2010, 55(1): 283–290

    Article  CAS  Google Scholar 

  18. Najibi H, Maleki N. Equilibrium solubility of carbon dioxide in Nmethyldiethanolamine plus piperazine aqueous solution: Experimental measurement and prediction. Fluid Phase Equilibria, 2013, 354: 298–303

    Article  CAS  Google Scholar 

  19. Derks P W J, Hogendoorn J A, Versteeg G F. Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine. Journal of Chemical Thermodynamics, 2010, 42(1): 151–163

    Article  CAS  Google Scholar 

  20. Vahidi M, Matin N S, Goharrokhi M, Jenab M H, Abdi M A, Najibi S H. Correlation of CO2 solubility in N-methyldiethanolamine + piperazine aqueous solutions using extended Debye-Hückel model. Journal of Chemical Thermodynamics, 2009, 41(11): 1272–1278

    Article  CAS  Google Scholar 

  21. Ali B S, Aroua MK. Effect of piperazine on CO2 loading in aqueous solutions of MDEA at low pressure. International Journal of Thermophysics, 2004, 25(6): 1863–1870

    Article  CAS  Google Scholar 

  22. Kamps A P S, Xia J Z, Maurer G. Solubility of CO2 in (H2O + piperazine) and in (H2O + MDEA + piperazine). AIChE Journal. American Institute of Chemical Engineers, 2003, 49(10): 2662–2670

    Article  Google Scholar 

  23. Moioli S, Pellegrini L A. Regeneration section of CO2 capture plant by MEA scrubbing with a Rate-Based Model. Chemical Engineering Transactions, 2013, 32: 1849–1854

    Google Scholar 

  24. De Guido G, Langè S, Moioli S, Pellegrini L A. Thermodynamic method for the prediction of solid CO2 formation from multicomponent mixtures. Process Safety and Environmental Protection, 2014, 92(1): 70–79

    Article  Google Scholar 

  25. Pellegrini L A, Moioli S, Brignoli F, Bellini C. LNG technology: The weathering in above-ground storage tanks. Industrial & Engineering Chemistry Research, 2014, 53(10): 3931–3937

    Article  CAS  Google Scholar 

  26. Moioli S. The rate-based modelling of CO2 removal from the flue gases of power plants. WIT Transactions on Ecology and the Environment, 2014, 186: 635–646

    Article  Google Scholar 

  27. Edwards T J, Maurer G, Newman J, Prausnitz J M. Vapor-liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE Journal. American Institute of Chemical Engineers, 1978, 24(6): 966–976

    Article  CAS  Google Scholar 

  28. Moioli S, Pellegrini L A. Improved rate-based modeling of the process of CO2 capture with PZ solution. Chemical Engineering Research & Design, 2015, 93: 611–620

    Article  CAS  Google Scholar 

  29. AspenTech. ASPEN Plus® Guidelines, Burlington, MA: Aspen-Tech, 2014

    Google Scholar 

  30. Austgen D M, Rochelle G T, Chen C C. Model of vapor-liquidequilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H2S and CO2 solubility in aqueous MDEA and CO2 solubility in aqueous mixtures of MDEA with MEA or DEA. Industrial & Engineering Chemistry Research, 1991, 30(3): 543–555

    Article  CAS  Google Scholar 

  31. Haghtalab A, Eghbali H, Shojaeian A. Experiment and modeling solubility of CO2 in aqueous solutions of diisopropanolamine; 2- amino-2-methyl-1-propanol; Piperazine at high pressures. Journal of Chemical Thermodynamics, 2014, 71: 71–83

    Article  CAS  Google Scholar 

  32. AspenTech. ASPEN Properties Databank®, Burlington, MA: AspenTech, 2014

    Google Scholar 

  33. Dash S K, Samanta A, Samanta A N, Bandyopadhyay S S. Vapour liquid equilibria of carbon dioxide in dilute and concentrated aqueous solutions of piperazine at low to high pressure. Fluid Phase Equilibria, 2011, 300(1-2): 145–154

    Article  CAS  Google Scholar 

  34. Chen X. Carbon dioxide thermodynamics, kinetics, and mass transfer in aqueous piperazine derivatives and other amines. Dissertation for the Doctoral Degree. Texas: The University of Texas, 2011

    Google Scholar 

  35. Posey M L. Thermodynamic model for acid gas loaded aqueous alkanolamine solutions. Dissertation for the Master Degree. Austin: University of Texas at Austin, 1995

    Google Scholar 

  36. Brelvi S W, O’Connell J P. Corresponding states correlations for liquid compressibility and partial molar volumes of gases at infinite dilution in liquids. AIChE Journal. American Institute of Chemical Engineers, 1972, 18(6): 1239–1243

    Article  CAS  Google Scholar 

  37. Brelvi S W, O’Connell J P. Prediction of unsymmetric convention liquid-phase activity coefficients of hydrogen and methane. AIChE Journal. American Institute of Chemical Engineers, 1975, 21(1): 157–160

    Article  CAS  Google Scholar 

  38. Redlich O, Kwong J N S. On the thermodynamics of solutions. V: An equation of state. Fugacities of gaseous solutions. Chemical Reviews, 1949, 44(1): 233–244

    Article  CAS  Google Scholar 

  39. Austgen D M A. Model of vapor-liquid equilibria for acid gasalkanolamine-H2O systems. Dissertation for the Doctoral Degree. Texas: University of Texas, 1989

    Google Scholar 

  40. Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal. American Institute of Chemical Engineers, 1968, 14(1): 135–144

    Article  CAS  Google Scholar 

  41. Chen C C, Britt H I, Boston J F, Evans L B. Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE Journal. American Institute of Chemical Engineers, 1979, 25(5): 820–831

    Article  CAS  Google Scholar 

  42. Chen C C, Britt H I, Boston J F, Evans L B. Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1982, 28(4): 588–596

    Article  CAS  Google Scholar 

  43. Chen C C, Evans L B. A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1986, 32(3): 444–454

    Article  CAS  Google Scholar 

  44. Mock B, Evans L B, Chen C C. Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE Journal. American Institute of Chemical Engineers, 1986, 32(10): 1655–1664

    Article  CAS  Google Scholar 

  45. Austgen D M, Rochelle G T, Peng X, Chen C C. Model of vapor liquid equilibria for aqueous acid gas alkanolamine systems using the electrolyte NRTL equation. Industrial & Engineering Chemistry Research, 1989, 28(7): 1060–1073

    Article  CAS  Google Scholar 

  46. Liu Y D, Zhang L Z, Watanasiri S. Representing vapor-liquid equilibrium for an aqueous MEA-CO2 system using the electrolyte nonrandom-two-liquid model. Industrial & Engineering Chemistry Research, 1999, 38(5): 2080–2090

    Article  CAS  Google Scholar 

  47. Hessen E T, Haug-Warberg T, Svendsen H F. The refined e-NRTL model applied to CO2-H2O-alkanolamine systems. Chemical Engineering Science, 2010, 65(11): 3638–3648

    Article  CAS  Google Scholar 

  48. Pellegrini L A, Langé S, Moioli S, Picutti B, Vergani P. Influence of gas impurities on thermodynamics of amine solutions. 1. Aromatics. Industrial & Engineering Chemistry Research, 2013, 52(5): 2018–2024

    Article  CAS  Google Scholar 

  49. Langè S, Pellegrini L A, Moioli S, Picutti B, Vergani P. Influence of gas impurities on thermodynamics of amine solutions. 2. Mercaptans. Industrial & Engineering Chemistry Research, 2013, 52(5): 2025–2031

    Article  Google Scholar 

  50. Bishnoi S, Rochelle G T. Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. AIChE Journal. American Institute of Chemical Engineers, 2002, 48(12): 2788–2799

    Article  CAS  Google Scholar 

  51. Freguia S. Modeling of CO2 removal from flue gase with monoethanolamine. Dissertation for the Master Degree. Texas: The University of Texas, 2002

    Google Scholar 

  52. Britt H I, Luecke R H. The estimation of parameters in nonlinear, implicit models. Technometrics, 1973, 15(2): 233–247

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Moioli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moioli, S., Pellegrini, L.A. Modeling the methyldiethanolamine-piperazine scrubbing system for CO2 removal: Thermodynamic analysis. Front. Chem. Sci. Eng. 10, 162–175 (2016). https://doi.org/10.1007/s11705-016-1555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1555-5

Keywords

Navigation