Skip to main content
Log in

High production of butyric acid by Clostridium tyrobutyricum mutant

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of Clostridium tyrobutyricum (PAK-Em). First, the free-cell fermentation at pH 6.0 produced butyric acid with concentration of 38.44 g/L and yield of 0.42 g/g. Second, the immobilizedcell fermentations using fibrous-bed bioreactor (FBB) were run at pHs of 5.0, 5.5, 6.0, 6.5 and 7.0 to optimize fermentation process and improve the butyric acid production. It was found that the highest titer of butyric acid, 63.02 g/L, was achieved at pH 6.5. Finally, the metabolic flux balance analysis was performed to investigate the carbon rebalance in C. tyrobutyricum. The results show both gene manipulation and fermentation pH change redistribute carbon between biomass, acetic acid and butyric acid. This study demonstrated that high butyric acid production could be obtained by integrating metabolic engineering and fermentation process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei D, Liu X, Yang S T. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresource Technology. 2013, 129: 553–560

    Article  CAS  Google Scholar 

  2. Dwidar M, Park J Y, Mitchell R J, Sang B I. The future of butyric acid in industry. The Scientific World Journal. 2012, 471417

    Google Scholar 

  3. Atweh G F, DeSimone J, Saunthararajah Y, Fathallah H, Weinberg R S, Nagel R L, Fabry M E, Adams R J. Hemoglobinopathies. American Society of Hematology Education Program, 2003: 14–39

  4. Canani R B, Costanzo M D, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology. 2011, 17(12): 1519–1528

    Article  CAS  Google Scholar 

  5. Lazarova D L, Chiaro C, Bordonaro M. Butyrate induced changes in Wnt-signaling specific gene expression in colorectal cancer cells. BMC Research Notes. 2014, 7(1): 226

    Article  Google Scholar 

  6. Huang J, Cai J, Wang J, Zhu X, Huang L, Yang S T, Xua Z. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresource Technology. 2011, 102(4): 3923–3926

    Article  CAS  Google Scholar 

  7. Kong Q, He G Q, Chen F, Ruan H. Studies on a kinetic model for butyric acid bioproduction by Clostridium butyricum. Letters in Applied Microbiology. 2006, 43(1): 71–77

    Article  CAS  Google Scholar 

  8. Zhang C, Yang H, Yang F, Ma Y. Current progress on butyric acid production by fermentation. Current Microbiology. 2009, 59(6): 656–663

    Article  CAS  Google Scholar 

  9. Canganella F, Wiegel J. Continuous cultivation of Clostridium thermobutyricum in a rotary fermentor system. Journal of Industrial Microbiology & Biotechnology. 2000, 24(1): 7–13

    Article  CAS  Google Scholar 

  10. Ma C, Kojima K, Xu N, Mobley J, Zhou L, Yang S T, Liu X M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Journal of Biotechnology. 2015, 193: 108–119

    Article  CAS  Google Scholar 

  11. Patel G B, Agnew B J. Growth and butyric acid production by Clostridium populeti. Archives of Microbiology. 1988, 150(3): 267–271

    Article  CAS  Google Scholar 

  12. He G Q, Kong Q, Chen Q H, Ruan H. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB. Journal of Zhejiang University. 2005, 6(11): 1076–1080

    Article  Google Scholar 

  13. Cascone R. Biobutanol—A replacement for bioethanol. Chemical Engineering Progress. 2008, 104(8): 4–9

    Google Scholar 

  14. Alam S, Stevens D, Bajpai R. Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. Journal of Industrial Microbiology. 1988, 2(6): 359–364

    Article  CAS  Google Scholar 

  15. Canganella F, Kuk S U, Morgan H, Wiegel J. Clostridium thermobutyricum: Growth studies and stimulation of butyrate formation by acetate supplementation. Microbiological Research. 2002, 157(2): 149–156

    Article  CAS  Google Scholar 

  16. Jo J H, Lee D S, Park J M. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology. 2008, 99(17): 8485–8491

    Article  CAS  Google Scholar 

  17. Huang Y L, Wu Z, Zhang L, Cheung C M, Yang S T. Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresource Technology. 2002, 82(1): 51–59

    Article  CAS  Google Scholar 

  18. Michel-Savin D, Marchal R, Vandecasteele J P. Butyric fermentation: Metabolic behavior and production performance of Clostridium tyrobutyricum in a continuous culture with cell recycle. Applied Microbiology and Biotechnology. 1990, 34(2): 172–177

    Article  CAS  Google Scholar 

  19. Liu X, Yang S T. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry. 2006, 41(4): 801–808

    Article  CAS  Google Scholar 

  20. Jiang L, Wang J, Liang S, Cai J, Xu Z, Cen P, Yang S T, Li S. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering. 2009, 108(1): 31–40

    Article  Google Scholar 

  21. Saini M, Wang Z W, Chiang C J, Chao Y P. Metabolic engineering of Escherichia coli for production of butyric acid. Journal of Agricultural and Food Chemistry. 2014, 62(19): 4342–4348

    Article  CAS  Google Scholar 

  22. Liu X, Zhu Y, Yang S. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme and Microbial Technology. 2006, 38(3–4): 521–528

    Article  CAS  Google Scholar 

  23. Lewis V P, Yang S T. Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packedbed bioreactor. Biotechnology and Bioengineering. 1992, 40(4): 465–474

    Article  CAS  Google Scholar 

  24. Huang Y, Yang S T. Acetate production from whey lactose using coimmobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnology and Bioengineering. 1998, 60(4): 499–507

    Article  Google Scholar 

  25. Silva E M, Yang S T. Kinetics and stability of a fibrous bed bioreactor for continuous production of lactic from unsupplemented acid whey. Journal of Biotechnology. 1995, 41(1): 59–70

    Article  CAS  Google Scholar 

  26. Liu X, Yang S T. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry. 2006, 41(4): 801–808

    Article  CAS  Google Scholar 

  27. Yang S T. Extractive fermentation using convoluted fibrous bed bioreactor. US Patent, 5563069, 1996-10-08

  28. Zhu Y. Enhanced butyric acid fermentation by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Dissertation for the Doctoral Degree. Columbus: The Ohio State University, USA. 2003, 99–100

    Google Scholar 

  29. Zhu Y, Yang S T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology. 2004, 110(2): 143–157

    Article  CAS  Google Scholar 

  30. Zhu Y, Liu X, Yang S T. Construction and characterization of pta gene deleted mutant of Clostridium tyrobutyricm for enhanced butyric acid fermentation. Biotechnology and Bioengineering. 2005, 90(2): 154–166

    Article  CAS  Google Scholar 

  31. Du Y, Jiang W, Yu M, Tang I, Yang S T. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology and Bioengineering. 2014, 112(4): 705–715

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang (Margaret) Liu.

Additional information

Dedicated to the 120th Anniversary of Tianjin University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Ou, J., Miller, M. et al. High production of butyric acid by Clostridium tyrobutyricum mutant. Front. Chem. Sci. Eng. 9, 369–375 (2015). https://doi.org/10.1007/s11705-015-1525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1525-3

Keywords

Navigation