Skip to main content
Log in

Revolutionizing orthopedics: a comprehensive review of robot-assisted surgery, clinical outcomes, and the future of patient care

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Robotic-assisted orthopedic surgery (RAOS) is revolutionizing the field, offering the potential for increased accuracy and precision and improved patient outcomes. This comprehensive review explores the historical perspective, current robotic systems, advantages and limitations, clinical outcomes, patient satisfaction, future developments, and innovation in RAOS. Based on systematic reviews, meta-analyses, and recent studies, this article highlights the most significant findings and compares RAOS to conventional techniques. As robotic-assisted surgery continues to evolve, clinicians and researchers must stay informed and adapt their practices to provide optimal patient care. Evidence from published studies corroborates these claims, highlighting superior component positioning, decreased incidence of complications, and heightened patient satisfaction. However, challenges such as costs, learning curves, and technical issues must be resolved to fully capitalize on these advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets analyzed during the present study are available from the corresponding author upon reasonable request.

References

  1. Garg B, Mehta N, Malhotra R (2020) Robotic spine surgery: ushering in a new era. J Clin Orthop Trauma 11(5):753–760

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li C, Wang L, Perka C, Trampuz A (2021) Clinical application of robotic orthopedic surgery: a bibliometric study. BMC Musculoskelet Disord 22(1):1–14

    Article  Google Scholar 

  3. Seyhan AA, Carini C (2019) Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med 17(1):2–28

    Article  Google Scholar 

  4. Ashrafian H, Clancy O, Grover V, Darzi A (2017) The evolution of robotic surgery: surgical and anesthetic aspects. Br J Anaesth 119(suppl_1):i72–i84

    Article  CAS  PubMed  Google Scholar 

  5. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH (2011) Robotic systems in orthopedic surgery. J Bone Joint Surg Br 93(10):1296–1299

    Article  CAS  PubMed  Google Scholar 

  6. Marcus HJ, Vakharia VN, Ourselin S, Duncan J, Tisdall M, Aquilina K (2018) Robot-assisted stereotactic brain biopsy: a systematic review and bibliometric analysis. Childs Nerv Syst 34(7):1299–1309

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shah J, Vyas A, Vyas D (2014) The history of robotics in surgical specialties. Am J Robot Surg 1(1):12–20

    Article  PubMed  PubMed Central  Google Scholar 

  8. Parsley BS (2018) Robotics in orthopedics: a brave new world. J Arthroplasty 33(8):2355–2357

    Article  PubMed  Google Scholar 

  9. Roche M (2021) The MAKO robotic-arm knee arthroplasty system. Arch Orthop Trauma Surg 141(12):2043–2047

    Article  PubMed  Google Scholar 

  10. Nam CH, Lee SC, Kim JH, Ahn HS, Baek JH (2022) Robot-assisted total knee arthroplasty improves mechanical alignment and accuracy of component positioning compared to the conventional technique. J Exp Orthop 9(1):1–6

    Article  Google Scholar 

  11. Battenberg AK, Netravali NA, Lonner JH (2020) A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship. J Robot Surg 14(1):55–60

    Article  PubMed  Google Scholar 

  12. Bell C, Grau L, Orozco F, Ponzio D, Post Z, Czymek M, Ong A (2022) The successful implementation of the Navio robotic technology required 29 cases. J Robot Surg 16(3):495–499

    Article  PubMed  Google Scholar 

  13. Batailler C, Hannouche D, Benazzo F, Parratte S (2021) Concepts and techniques of a new robotically assisted technique for total knee arthroplasty: the ROSA knee system. Arch Orthop Trauma Surg 141(12):2049–2058

    Article  PubMed  Google Scholar 

  14. Siddiqi A, Horan T, Molloy RM, Bloomfield MR, Patel PD, Piuzzi NS (2021) A clinical review of robotic navigation in total knee arthroplasty: historical systems to modern design. EFORT Open Rev 6(4):252–269

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang M, Tetreault TA, Vaishnav A, York PJ, Staub BN (2021) The current state of navigation in robotic spine surgery. Ann Transl Med 9(1):1–11

    Article  Google Scholar 

  16. Jiang B, Karim Ahmed A, Zygourakis CC, Kalb S, Zhu AM, Godzik J, Molina CA, Blitz AM, Bydon A, Crawford N, Theodore N (2018) Pedicle screw accuracy assessment in ExcelsiusGPS® robotic spine surgery: evaluation of deviation from pre-planned trajectory. Chin Neurosurg J 4:1–6

    CAS  Google Scholar 

  17. Nd IR, Bukowski BR, Abiola R, Anderson P, Chughtai M, Khlopas A, Mont MA (2017) Robotic-assisted total hip arthroplasty: outcomes at minimum two-year follow-up. Surg Technol Int. 30:365–372

    Google Scholar 

  18. Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B (2017) Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial. Bone Joint Res 6(11):631–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB (2014) Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop Relat Res 472(1):329–336

    Article  PubMed  Google Scholar 

  20. Zhang J, Ndou WS, Ng N, Gaston P, Simpson PM, Macpherson GJ, Patton JT, Clement ND (2022) Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 30(8):2677–2695

    Article  PubMed  Google Scholar 

  21. Adamska O, Modzelewski K, Szymczak J, Świderek J, Maciąg B, Czuchaj P, Poniatowska M, Wnuk A (2023) Robotic-assisted total knee arthroplasty utilizing NAVIO, CORI imageless systems and manual TKA accurately restore femoral rotational alignment and yield satisfactory clinical outcomes: a randomized controlled trial. Medicina (Kaunas) 59(2):236

    Article  PubMed  Google Scholar 

  22. Collins K, Agius PA, Fraval A, Petterwood J (2022) Initial Experience with the NAVIO robotic-assisted total knee replacement-coronal alignment accuracy and the learning curve. J Knee Surg 35(12):1295–1300

    Article  PubMed  Google Scholar 

  23. Herry Y, Batailler C, Lording T, Servien E, Neyret P, Lustig S (2017) Improved joint-line restitution in unicompartmental knee arthroplasty using a robotic-assisted surgical technique. Int Orthop 41(11):2265–2271

    Article  PubMed  Google Scholar 

  24. Parratte S, Price AJ, Jeys LM, Jackson WF, Clarke HD (2019) Accuracy of a new robotically-assisted technique for total knee arthroplasty: a cadaveric study. J Arthroplasty 34(11):2799–2803

    Article  PubMed  Google Scholar 

  25. Hasegawa M, Tone S, Naito Y, Sudo A (2022) Two- and three-dimensional measurements following robotic-assisted total knee arthroplasty. Int J Med Robot 18(6):e2455

    Article  PubMed  Google Scholar 

  26. Massé V, Cholewa J, Shahin M (2023) Personalized alignment™ for total knee arthroplasty using the ROSA® knee and Persona® knee systems: surgical technique. Front Surg 9:1098504

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wallace DJ, Vardiman AB, Booher GA, Crawford NR, Riggleman JR, Greeley SL, Ledonio CG (2020) Navigated robotic assistance improves pedicle screw accuracy in minimally invasive surgery of the lumbosacral spine: 600 pedicle screws in a single institution. Int J Med Robot 16(1):e2054

    Article  PubMed  Google Scholar 

  28. Vardiman AB, Wallace DJ, Crawford NR, Riggleman JR, Ahrendtsen LA, Ledonio CG (2020) Pedicle screw accuracy in clinical utilization of minimally invasive navigated robot-assisted spine surgery. J Robot Surg 14(3):409–413

    Article  PubMed  Google Scholar 

  29. Vaccaro AR, Hussain M, Harris J, Crawford N, Chang V, Passias PG, Samora W, Patel RR, Wadhwa R, D’Agostino S, Panchal RR (2017) In vitro analysis of accuracy, dosage and surgical time required for pedicle screw placement using conventional percutaneous screw and robotic-assisted screw techniques. Spine J 17(10):S261

    Article  Google Scholar 

  30. Karuppiah K, Sinha J (2018) Robotics in trauma and orthopaedics. Ann R Coll Surg Engl 100(6_sup):8–15

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jassim SS, Benjamin-Laing H, Douglas SL, Haddad FS (2014) Robotic and navigation systems in orthopaedic surgery: how much do our patients understand? Clin Orthop Surg 6(4):462–467

    Article  PubMed  PubMed Central  Google Scholar 

  32. Picard F, Deakin AH, Clarke JV, Dillon JM, Gregori A (2007) Using navigation intraoperative measurements narrows range of outcomes in TKA. Clin Orthop Relat Res 463:50–57

    Article  PubMed  Google Scholar 

  33. Ngim HJ, Van Bavel D, De Steiger R, Tang AWW (2023) Robotic-assisted revision total knee arthroplasty: a novel surgical technique. Arthroplasty 5(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ren Y, Cao S, Wu J, Weng X, Feng B (2019) Efficacy and reliability of active robotic-assisted total knee arthroplasty compared with conventional total knee arthroplasty: a systematic review and meta-analysis. Postgrad Med J 95(1121):125–133

    Article  PubMed  Google Scholar 

  35. Kolessar DJ, Hayes DS, Harding JL, Rudraraju RT, Graham JH (2022) Robotic-arm assisted technology’s impact on knee arthroplasty and associated healthcare costs. J Health Econ Outcomes Res 9(2):57–66

    Article  PubMed  PubMed Central  Google Scholar 

  36. St Mart JP, Goh EL (2021) The current state of robotics in total knee arthroplasty. EFORT Open Rev 6(4):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sodhi N, Khlopas A, Piuzzi NS, Sultan AA, Marchand RC, Malkani AL, Mont MA (2018) The learning curve associated with robotic total knee arthroplasty. J Knee Surg 31(1):17–21

    Article  PubMed  Google Scholar 

  38. Chen Z, Bhowmik-Stoker M, Palmer M, Coppolecchia A, Harder B, Mont MA, Marchand RC (2022) Time-based learning curve for robotic-assisted total knee arthroplasty: a multicenter study. J Knee Surg 36:873–877

    PubMed  Google Scholar 

  39. Nogalo C, Meena A, Abermann E, Fink C (2023) Complications and downsides of the robotic total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc 31(3):736–750

    Article  PubMed  Google Scholar 

  40. Jacofsky DJ, Allen M (2016) Robotics in arthroplasty: a comprehensive review. J Arthroplasty 31(10):2353–2363

    Article  PubMed  Google Scholar 

  41. Pitto RP, Malak S, Anderson IA (2009) Accuracy of computer-assisted navigation for femoral head resurfacing decreases in hips with abnormal anatomy. Clin Orthop Relat Res 467(9):2310–2317

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kurmis AP, Ianunzio JR (2022) Artificial intelligence in orthopedic surgery: evolution, current state and future directions. Arthroplasty 4(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Farhadi F, Barnes MR, Sugito HR, Sin JM, Henderson ER, Levy JJ (2022) Applications of artificial intelligence in orthopaedic surgery. Front Med Technol 4:995526

    Article  PubMed  PubMed Central  Google Scholar 

  44. Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P (2021) Accessing artificial intelligence for clinical decision-making. Front Digit Health 3:645232

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chytas D, Malahias MA, Nikolaou VS (2019) Augmented reality in orthopedics: current state and future directions. Front Surg 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li L, Yu F, Shi D, Shi J, Tian Z, Yang J, Wang X, Jiang Q (2017) Application of virtual reality technology in clinical medicine. Am J Transl Res 9(9):3867–3880

    PubMed  PubMed Central  Google Scholar 

  47. Shibanuma N, Ishida K, Matsumoto T, Takayama K, Sanada Y, Kurosaka M, Kuroda R, Hayashi S (2021) Early postoperative clinical recovery of robotic arm-assisted vs. image-based navigated total hip arthroplasty. BMC Musculoskelet Disord 22(1):314

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kort N, Stirling P, Pilot P, Müller JH (2021) Clinical and surgical outcomes of robot-assisted versus conventional total hip arthroplasty: a systematic overview of meta-analyses. EFORT Open Rev 6(12):1157–1165

    Article  PubMed  PubMed Central  Google Scholar 

  49. Domb BG, Chen JW, Lall AC, Perets I, Maldonado DR (2020) Minimum 5-year outcomes of robotic-assisted primary total hip arthroplasty with a nested comparison against manual primary total hip arthroplasty: a propensity score-matched study. J Am Acad Orthop Surg 28(20):847–856

    Article  PubMed  Google Scholar 

  50. Loomans L, Leirs G, Vandenneucker H (2023) Operating room efficiency after the implementation of MAKO robotic-assisted total knee arthroplasty. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-023-04834-w

    Article  PubMed  Google Scholar 

  51. Bhowmik-Stoker M, Mathew KK, Chen Z, Chen AF, Hozack WJ, Mahoney O, Orozco FR, Mont MA (2022) Return to work and driving after robotic arm-assisted total knee arthroplasty. Arthroplast Today 16:219–223

    Article  PubMed  PubMed Central  Google Scholar 

  52. Marchand RC, Sodhi N, Khlopas A, Sultan AA, Harwin SF, Malkani AL, Mont MA (2017) Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: a short-term evaluation. J Knee Surg 30(9):849–853

    Article  PubMed  Google Scholar 

  53. Marchand KB, Moody R, Scholl LY, Bhowmik-Stoker M, Taylor KB, Mont MA, Marchand RC (2023) Results of robotic-assisted versus manual total knee arthroplasty at 2-year follow-up. J Knee Surg 36(2):159–166

    Article  PubMed  Google Scholar 

  54. Kayani B, Konan S, Tahmassebi J, Pietrzak JRT, Haddad FS (2018) Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study. Bone Joint J. 100-B(7):930–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mancino F, Cacciola G, Malahias MA, De Filippis R, De Marco D, Di Matteo V, Gu A, Sculco PK, Maccauro G, De Martino I (2020) What are the benefits of robotic-assisted total knee arthroplasty over conventional manual total knee arthroplasty? A systematic review of comparative studies. Orthop Rev (Pavia). 12(Suppl 1):8657

    PubMed  PubMed Central  Google Scholar 

  56. Chen X, Xiong J, Wang P, Zhu S, Qi W, Peng H, Yu L, Qian W (2018) Robotic-assisted compared with conventional total hip arthroplasty: systematic review and meta-analysis. Postgrad Med J 94(1112):335–341. https://doi.org/10.1136/postgradmedj-2017-135352

    Article  PubMed  Google Scholar 

  57. Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL (2014) Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty 29(12):2373–2377

    Article  PubMed  Google Scholar 

Download references

Funding

The authors received no external funding for this article's research, authorship, and/or publication.

Author information

Authors and Affiliations

Authors

Contributions

Our manuscript results from a collaborative effort, with all authors contributing equally to this comprehensive review’s research, analysis, and writing. We have ensured that each author’s expertise and insight are reflected in the manuscript, leading to a well-rounded and informative publication. It was truly a team effort, and we are proud of the final product that we have produced together. We hope that readers will find it informative, engaging, and thought-provoking.

Corresponding author

Correspondence to Carlos Suarez-Ahedo.

Ethics declarations

Conflict of interest

The authors declare no competing interests. We want to note that while most authors associated with this publication have no conflicts of interest, one of the co-authors has various relationships with the industry. However, it's important to emphasize that these relationships do not constitute a specific conflict of interest in the context of this article. For total transparency, we have attached this co-author's conflict of interest declaration detailing the nature of the industry relationships. We affirm our commitment to scientific integrity and assure readers that all necessary measures were taken to ensure an unbiased and robust research process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suarez-Ahedo, C., Lopez-Reyes, A., Martinez-Armenta, C. et al. Revolutionizing orthopedics: a comprehensive review of robot-assisted surgery, clinical outcomes, and the future of patient care. J Robotic Surg 17, 2575–2581 (2023). https://doi.org/10.1007/s11701-023-01697-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-023-01697-6

Keywords

Navigation