Skip to main content

Advertisement

Log in

Perioperative, functional, and oncologic outcomes of minimally-invasive surgery for highly complex renal tumors (RENAL or PADUA score ≥ 10): an evidence-based analysis

  • Review
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The primary objective of the current study is to undertake a comparative analysis of the effectiveness and safety of minimally-invasive partial nephrectomy (MIPN; including laparoscopic and robotic approaches) and open partial nephrectomy (OPN) for the treatment of highly complex renal tumors (defined as PADUA or RENAL score ≥ 10). A comprehensive search was conducted in four electronic databases (PubMed, Web of Science, Embase, and Cochrane Library) to identify relevant studies published in the English language up to April 2023. The current study employed Review Manager 5.4 and encompassed controlled trials of both MIPN and OPN for the treatment of highly complex renal tumors. This study comprised a total of eight comparative trials involving 1161 patients. MIPN demonstrated a significant reduction in length of hospital stay (weighted mean difference [WMD] − 2.08 days, 95% confidence interval [CI] − 2.48, − 1.68; p < 0.00001), blood loss (WMD − 39.86 mL, 95% CI − 75.32, − 4.39; p = 0.03), transfusion rates (odds ratio [OR] 0.30, 95% CI 0.13, 0.71; p = 0.006), and overall complications (OR 0.46, 95% CI 0.31, 0.70; p = 0.0003). However, there were no significant differences between MIPN and OPN in terms of operative time, warm ischemia time, conversion to radical nephrectomy rates, renal functional and oncologic outcomes. This study reveals that MIPN presents several benefits in comparison to OPN, including decreased length of hospital stay, blood loss, transfusion rates, and complications, while still offering renal functional and oncological outcomes that are comparable to those of OPN in patients with highly complex renal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Raw data available at request.

References

  1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. https://doi.org/10.3322/caac.21332

    Article  PubMed  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I et al (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387. https://doi.org/10.1016/j.ejca.2018.07.005

    Article  CAS  PubMed  Google Scholar 

  3. Yamagami T, Yoshimatsu R, Kajiwara K et al (2019) Protection from injury of organs adjacent to a renal tumor during percutaneous cryoablation. Int J Urol 26:785–790. https://doi.org/10.1111/iju.14013

    Article  PubMed  Google Scholar 

  4. Scosyrev E, Messing EM, Sylvester R et al (2014) Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur Urol 65:372–377. https://doi.org/10.1016/j.eururo.2013.06.044

    Article  PubMed  Google Scholar 

  5. Capitanio U, Terrone C, Antonelli A et al (2015) Nephron-sparing techniques independently decrease the risk of cardiovascular events relative to radical nephrectomy in patients with a T1a–T1b renal mass and normal preoperative renal function. Eur Urol 67:683–689. https://doi.org/10.1016/j.eururo.2014.09.027

    Article  PubMed  Google Scholar 

  6. Mari A, Campi R, Schiavina R et al (2019) Nomogram for predicting the likelihood of postoperative surgical complications in patients treated with partial nephrectomy: a prospective multicentre observational study (the RECORd 2 project). BJU Int 124:93–102. https://doi.org/10.1111/bju.14680

    Article  PubMed  Google Scholar 

  7. Mari A, Antonelli A, Bertolo R et al (2017) Predictive factors of overall and major postoperative complications after partial nephrectomy: results from a multicenter prospective study (The RECORd 1 project). Eur J Surg Oncol 43:823–830. https://doi.org/10.1016/j.ejso.2016.10.016

    Article  CAS  PubMed  Google Scholar 

  8. Kutikov A, Uzzo RG (2009) The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol 182:844–853. https://doi.org/10.1016/j.juro.2009.05.035

    Article  PubMed  Google Scholar 

  9. Ficarra V, Novara G, Secco S et al (2009) Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol 56:786–793. https://doi.org/10.1016/j.eururo.2009.07.040

    Article  PubMed  Google Scholar 

  10. Laganosky DD, Filson CP, Master VA (2017) Surgical margins in nephron-sparing surgery for renal cell carcinoma. Curr Urol Rep 18:8. https://doi.org/10.1007/s11934-017-0651-5

    Article  PubMed  Google Scholar 

  11. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  12. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg 88:105906. https://doi.org/10.1016/j.ijsu.2021.105906

    Article  PubMed  Google Scholar 

  13. Sterne JA, Hernán MA, Reeves BC et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  14. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu Z, Zhang X, Lv P et al (2022) Functional, oncological outcomes and safety of laparoscopic partial nephrectomy versus open partial nephrectomy in localized renal cell carcinoma patients with high anatomical complexity. Surg Endosc 36:7629–7637. https://doi.org/10.1007/s00464-022-09225-7

    Article  PubMed  Google Scholar 

  16. Li TT, Feng J, Li YL et al (2021) A retrospective study of open and endoscopic nephron sparing surgery in the treatment of complex renal tumors. Pak J Med Sci 37:1031–1035. https://doi.org/10.12669/pjms.37.4.3457

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu F, Xu Q, Liu XG (2021) Impact of laparoscopic partial nephrectomy and open partial nephrectomy on outcomes of clear cell renal cell carcinoma. Front Surg 8:681835. https://doi.org/10.3389/fsurg.2021.681835

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chiancone F, Fabiano M, Meccariello C et al (2021) Laparoscopic versus open partial nephrectomy for the management of highly complex renal tumors with PADUA score ⩾10: a single center analysis. Urologia 88:343–347. https://doi.org/10.1177/03915603211001677

    Article  PubMed  Google Scholar 

  19. Mari A, Tellini R, Porpiglia F et al (2021) Perioperative and mid-term oncological and functional outcomes after partial nephrectomy for complex (PADUA Score ≥10) renal tumors: a prospective multicenter observational study (the RECORD2 project). Eur Urol Focus 7:1371–1379. https://doi.org/10.1016/j.euf.2020.07.004

    Article  PubMed  Google Scholar 

  20. Kim JK, Lee H, Oh JJ et al (2019) Comparison of robotic and open partial nephrectomy for highly complex renal tumors (RENAL nephrometry score ≥10). PLoS ONE 14:e0210413. https://doi.org/10.1371/journal.pone.0210413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garisto J, Bertolo R, Dagenais J et al (2018) Robotic versus open partial nephrectomy for highly complex renal masses: comparison of perioperative, functional, and oncological outcomes. Urol Oncol 36:471.e1-471.e9. https://doi.org/10.1016/j.urolonc.2018.06.012

    Article  PubMed  Google Scholar 

  22. Zargar H, Bhayani S, Allaf ME et al (2014) Comparison of perioperative outcomes of robot-assisted partial nephrectomy and open partial nephrectomy in patients with a solitary kidney. J Endourol 28:1224–1230. https://doi.org/10.1089/end.2014.0297

    Article  PubMed  Google Scholar 

  23. Veccia A, Carbonara U, Djaladat H et al (2022) Robotic vs laparoscopic nephroureterectomy for upper tract urothelial carcinoma: a multicenter propensity-score matched pair “tetrafecta” analysis (ROBUUST Collaborative Group). J Endourol 36:752–759. https://doi.org/10.1089/end.2021.0587

    Article  PubMed  Google Scholar 

  24. Cinel SD, Hahn DA, Kawahara AY (2020) Predator-induced stress responses in insects: a review. J Insect Physiol 122:104039. https://doi.org/10.1016/j.jinsphys.2020.104039

    Article  CAS  PubMed  Google Scholar 

  25. Qian J, Jiang J, Li P et al (2019) Factors influencing the feasibility of segmental artery clamping during retroperitoneal laparoscopic partial nephrectomy. Urology 129:92–97. https://doi.org/10.1016/j.urology.2019.03.024

    Article  PubMed  Google Scholar 

  26. Thompson RH, Lane BR, Lohse CM et al (2010) Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol 58:340–345. https://doi.org/10.1016/j.eururo.2010.05.047

    Article  PubMed  Google Scholar 

  27. Zargar H, Akca O, Autorino R et al (2015) Ipsilateral renal function preservation after robot-assisted partial nephrectomy (RAPN): an objective analysis using mercapto-acetyltriglycine (MAG3) renal scan data and volumetric assessment. BJU Int 115:787–795. https://doi.org/10.1111/bju.12825

    Article  PubMed  Google Scholar 

  28. Aykan S, Singhal P, Nguyen DP et al (2014) Perioperative, pathologic, and early continence outcomes comparing three-dimensional and two-dimensional display systems for laparoscopic radical prostatectomy—a retrospective, single-surgeon study. J Endourol 28:539–543. https://doi.org/10.1089/end.2013.0630

    Article  PubMed  Google Scholar 

  29. Mourmouris P, Keskin SM, Skolarikos A et al (2019) A prospective comparative analysis of robot-assisted vs open simple prostatectomy for benign prostatic hyperplasia. BJU Int 123:313–317. https://doi.org/10.1111/bju.14531

    Article  CAS  PubMed  Google Scholar 

  30. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213. https://doi.org/10.1097/01.sla.0000133083.54934.ae

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marszalek M, Meixl H, Polajnar M et al (2009) Laparoscopic and open partial nephrectomy: a matched-pair comparison of 200 patients. Eur Urol 55:1171–1178. https://doi.org/10.1016/j.eururo.2009.01.042

    Article  PubMed  Google Scholar 

  32. Lane BR, Russo P, Uzzo RG et al (2011) Comparison of cold and warm ischemia during partial nephrectomy in 660 solitary kidneys reveals predominant role of nonmodifiable factors in determining ultimate renal function. J Urol 185:421–427. https://doi.org/10.1016/j.juro.2010.09.131

    Article  PubMed  Google Scholar 

  33. Mir MC, Campbell RA, Sharma N et al (2013) Parenchymal volume preservation and ischemia during partial nephrectomy: functional and volumetric analysis. Urology 82:263–268. https://doi.org/10.1016/j.urology.2013.03.068

    Article  PubMed  Google Scholar 

  34. Patton MW, Salevitz DA, Tyson MD 2nd et al (2016) Robot-assisted partial nephrectomy for complex renal masses. J Robot Surg 10:27–31. https://doi.org/10.1007/s11701-015-0554-8

    Article  PubMed  Google Scholar 

  35. Li K, Yu X, Yang X et al (2022) Perioperative and oncologic outcomes of single-port vs multiport robot-assisted radical prostatectomy: a meta-analysis. J Endourol 36:83–98. https://doi.org/10.1089/end.2021.0210

    Article  PubMed  Google Scholar 

  36. Kim J, Na JC, Lee JS et al (2022) Clinical implications for da Vinci SP partial nephrectomy in high-complexity tumors: propensity score-matching analysis. J Endourol 36:1290–1295. https://doi.org/10.1089/end.2022.0203

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 82160146); Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital (Grant numbers CY2021-MS-A12 and CY2020- MS08 and 2020QN-09); Natural Science Foundation of Gansu Province of China (Grant numbers 21JR1RA151).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions LX: Protocol development, data collection and management, methodology, data analysis and writing original draft. LK: Protocol development, data collection, data analysis, study supervision and writing original draft. ZJ: Protocol development, management and writing original draft. YW: Data analysis, methodology and writing original draft. TH: Data management and writing original draft. WW: Data management, methodology and writing original draft. CS: Data analysis, methodology and writing original draft. MJ: Protocol development, management, visualization and writing original draft. BS: Protocol development, management, visualization and writing original draft. YZ: Protocol development, visualization and writing original draft.

Corresponding authors

Correspondence to Jun-hai Ma, Jun-sheng Bao or Zhong-jin Yue.

Ethics declarations

Conflict of interest

All the Authors have nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11701_2023_1650_MOESM1_ESM.tif

Supplementary file1 Fig. S1 Funnel plot (A) operative time, (B) length of hospital stay, (C) blood loss, (D) overall complication (TIF 3758 KB)

Supplementary file2 (DOCX 16 KB)

Supplementary file3 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xr., Li, Kp., Zuo, Jl. et al. Perioperative, functional, and oncologic outcomes of minimally-invasive surgery for highly complex renal tumors (RENAL or PADUA score ≥ 10): an evidence-based analysis. J Robotic Surg 17, 1917–1931 (2023). https://doi.org/10.1007/s11701-023-01650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-023-01650-7

Keywords

Navigation