Skip to main content
Log in

Systematic review of academic robotic surgery curricula

  • Review Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The use of robotic surgery has increased exponentially in the United States. Despite this uptick in popularity, no standardized training pathway exists for surgical residents or practicing surgeons trying to cross-train onto the platform. We set out to perform a systematic review of existing literature to better describe and analyze existing robotic surgical training curricula amongst academic surgery programs. A systematic electronic search of the PubMed, Cochrane, and EBSCO databases was performed for articles describing simulation in robotic surgery from January 2010 to May 2022. Medical Subject Heading (MeSH) terms and keywords used to conduct this search were “Robotic,” “Surgery,” “Robotic Surgery,” “Training,” “Curriculum,” “Education,” and “Residency Program.” A total of 110 articles were identified for the systematic review. After screening the titles and abstracts, a total of 36 full-text original articles were included in this systematic review. Of these, 24 involved robotic surgery curricula designed to teach general robotic skills, whereas the remaining 12 were for teaching procedure specific skills. Of the 24 studies involving general robotic skills, 13 included didactics as a part of the curriculum, 23 utilized virtual reality trainers, 3 used inanimate tissue, and 1 used live animal models. Of the 12 papers reviewed regarding procedure specific curricula, seven involved urologic procedures (radical prostatectomy and nephrectomy), two involved general surgical procedures (colectomy and Roux-en-Y gastric bypass surgery), two involved obstetrics and gynecology procedures (hysterectomy with myomectomy and sacrocolpopexy, hysterectomy with pelvic lymphadenectomy) and one involved a cardiothoracic surgery procedure (robotic internal thoracic artery harvest). With the rapid implementation of robotic surgery, training programs have been tasked with the responsibility of ensuring their trainees are adequately proficient in the platform prior to graduation. However, due to the lack of uniformity between surgical training programs, when it comes to robotic surgical experience, a strong need persists for a standardized national robotics training curriculum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The authors confirms that the data supporting the findings of this paper is publically available.

References

  1. Sheetz KH, Claflin J, Dimick JB (2020) Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw Open 3(1):e1918911–e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911

    Article  PubMed  PubMed Central  Google Scholar 

  2. Childers CP, Maggard-Gibbons M (2018) Estimation of the acquisition and operating costs for robotic surgery. JAMA 320(8):835–836. https://doi.org/10.1001/jama.2018.9219

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ericsson KA (2004) Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med 79(10 Suppl):S70-81. https://doi.org/10.1097/00001888-200410001-00022

    Article  PubMed  Google Scholar 

  4. Cannon-Bowers JA, Bowers C, Procci K (2010) Optimizing learning in surgical simulations: guidelines from the science of learning and human performance. Surg Clin North Am 90(3):583–603. https://doi.org/10.1016/j.suc.2010.02.006

    Article  PubMed  Google Scholar 

  5. Moulton CA et al (2006) Teaching surgical skills: what kind of practice makes perfect?: a randomized, controlled trial. Ann Surg 244(3):400–409. https://doi.org/10.1097/01.sla.0000234808.85789.6a

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sachdeva AK (2005) Acquiring skills in new procedures and technology: the challenge and the opportunity. Arch Surg 140(4):387–389. https://doi.org/10.1001/archsurg.140.4.387

    Article  PubMed  Google Scholar 

  7. Ericsson KA (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15(11):988–994. https://doi.org/10.1111/j.1553-2712.2008.00227.x

    Article  PubMed  Google Scholar 

  8. Foell K et al (2013) Robotic surgery basic skills training: evaluation of a pilot multidisciplinary simulation-based curriculum. Can Urol Assoc J 7(11–12):430–434. https://doi.org/10.5489/cuaj.222

    Article  PubMed  PubMed Central  Google Scholar 

  9. Connolly M et al (2014) Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc 28(5):1691–1694. https://doi.org/10.1007/s00464-013-3373-x

    Article  PubMed  Google Scholar 

  10. Green CA, Chern H, O’Sullivan PS (2018) Current robotic curricula for surgery residents: a need for additional cognitive and psychomotor focus. Am J Surg 215(2):277–281. https://doi.org/10.1016/j.amjsurg.2017.09.040

    Article  PubMed  Google Scholar 

  11. Dulan G et al (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152(3):477–488. https://doi.org/10.1016/j.surg.2012.07.028

    Article  PubMed  Google Scholar 

  12. Winder JS et al (2016) Implementing a robotics curriculum at an academic general surgery training program: our initial experience. J Robot Surg 10(3):209–213. https://doi.org/10.1007/s11701-016-0569-9

    Article  PubMed  Google Scholar 

  13. Moit H et al (2019) A standardized robotic training curriculum in a general surgery program. JSLS. https://doi.org/10.4293/JSLS.2019.00045

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen R et al (2020) A comprehensive review of robotic surgery curriculum and training for residents, fellows, and postgraduate surgical education. Surg Endosc 34(1):361–367. https://doi.org/10.1007/s00464-019-06775-1

    Article  PubMed  Google Scholar 

  15. Satava RM et al (2020) Proving the effectiveness of the fundamentals of robotic surgery (FRS) skills curriculum: a single-blinded, multispecialty, multi-institutional randomized control trial. Ann Surg 272(2):384–392. https://doi.org/10.1097/SLA.0000000000003220

    Article  PubMed  Google Scholar 

  16. Stegemann AP et al (2013) Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology 81(4):767–774. https://doi.org/10.1016/j.urology.2012.12.033

    Article  PubMed  Google Scholar 

  17. Herron D, Marohn M (2008) A consensus document on robotic surgery. Surg Endosc 22(2):313–325. https://doi.org/10.1007/s00464-007-9727-5

    Article  CAS  PubMed  Google Scholar 

  18. Ahmed K et al (2015) Development of a standardised training curriculum for robotic surgery: a consensus statement from an international multidisciplinary group of experts. BJU Int 116(1):93–101. https://doi.org/10.1111/bju.12974

    Article  PubMed  Google Scholar 

  19. Brunckhorst O et al (2016) Training, simulation, the learning curve, and how to reduce complications in urology. Eur Urol Focus 2(1):10–18. https://doi.org/10.1016/j.euf.2016.02.004

    Article  PubMed  Google Scholar 

  20. Bahler CD, Sundaram CP (2014) Training in robotic surgery: simulators, surgery, and credentialing. Urol Clin 41(4):581–589. https://doi.org/10.1016/j.ucl.2014.07.012

    Article  Google Scholar 

  21. Farivar BS, Flannagan M, Leitman IM (2015) General surgery residents’ perception of robot-assisted procedures during surgical training. J Surg Educ 72(2):235–242. https://doi.org/10.1016/j.jsurg.2014.09.008

    Article  PubMed  Google Scholar 

  22. Moher D et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135

    Article  PubMed  Google Scholar 

  23. Aradaib M et al (2019) Safe adoption of robotic colorectal surgery using structured training: early Irish experience. J Robot Surg 13(5):657–662. https://doi.org/10.1007/s11701-018-00911-0

    Article  PubMed  Google Scholar 

  24. Bertolo R et al (2018) Single session of robotic human cadaver training: the immediate impact on urology residents in a teaching hospital. J Laparoendosc Adv Surg Tech A 28(10):1157–1162. https://doi.org/10.1089/lap.2018.0109

    Article  PubMed  Google Scholar 

  25. Dioun SM et al (2017) Setting benchmarks for the new user: training on the robotic simulator. JSLS. https://doi.org/10.4293/JSLS.2017.00059

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fantola G et al (2014) Robotic Roux-en-Y gastric bypass surgical simulation curriculum. Obes Surg 24(10):1833–1834. https://doi.org/10.1007/s11695-014-1370-3

    Article  CAS  PubMed  Google Scholar 

  27. Fastenberg JH, Gibber MJ, Smith RV (2018) Introductory TORS training in an otolaryngology residency program. J Robot Surg 12(4):617–623. https://doi.org/10.1007/s11701-018-0784-7

    Article  PubMed  Google Scholar 

  28. Gerull W, Zihni A, Awad M (2020) Operative performance outcomes of a simulator-based robotic surgical skills curriculum. Surg Endosc 34(10):4543–4548. https://doi.org/10.1007/s00464-019-07243-6

    Article  PubMed  Google Scholar 

  29. Gomez PP, Willis RE, Van Sickle KR (2015) Development of a virtual reality robotic surgical curriculum using the da Vinci Si surgical system. Surg Endosc 29(8):2171–2179. https://doi.org/10.1007/s00464-014-3914-y

    Article  PubMed  Google Scholar 

  30. Grannan HR et al (2021) Robotic general surgery resident training curriculum: a pilot experience. Surg Laparosc Endosc Percutaneous Tech 31(5):588–593. https://doi.org/10.1097/SLE.0000000000000942

    Article  Google Scholar 

  31. Harrison P et al (2018) The validation of a novel robot-assisted radical prostatectomy virtual reality module. J Surg Educ 75(3):758–766. https://doi.org/10.1016/j.jsurg.2017.09.005

    Article  PubMed  Google Scholar 

  32. Hogg ME et al (2017) Training in minimally invasive pancreatic resections: a paradigm shift away from “See one, do one, teach one.” HPB (Oxford) 19(3):234–245. https://doi.org/10.1016/j.hpb.2017.01.016

    Article  PubMed  Google Scholar 

  33. Ko YH, Choi JY, Song PH (2018) Concurrent validation of a robotic simulator curriculum focused on “core” exercises: does it help overcome baseline skill levels? Int J Urol 25(8):760–761. https://doi.org/10.1111/iju.13704

    Article  PubMed  Google Scholar 

  34. Krause W, Bird J (2019) Training robotic community surgeons: our experience implementing a robotics curriculum at a rural community general surgery training program. J Robot Surg 13(3):385–389. https://doi.org/10.1007/s11701-018-0860-z

    Article  PubMed  Google Scholar 

  35. Larcher A et al (2019) The ERUS curriculum for robot-assisted partial nephrectomy: structure definition and pilot clinical validation. Eur Urol 75(6):1023–1031. https://doi.org/10.1016/j.eururo.2019.02.031

    Article  PubMed  Google Scholar 

  36. Larcher A et al (2019) Virtual reality validation of the ERUS simulation-based training programmes: results from a high-volume training centre for robot-assisted surgery. Eur Urol 75(5):885–887. https://doi.org/10.1016/j.eururo.2019.02.008

    Article  PubMed  Google Scholar 

  37. Margueritte F et al (2020) Description of an initiation program to robotic in vivo gynecological surgery for junior surgeons. J Gynecol Obstet Hum Reprod 49(3):101627. https://doi.org/10.1016/j.jogoh.2019.101627

    Article  PubMed  Google Scholar 

  38. Mariani A, Pellegrini E, De Momi E (2021) Skill-oriented and performance-driven adaptive curricula for training in robot-assisted surgery using simulators: a feasibility study. IEEE Trans Biomed Eng 68(2):685–694. https://doi.org/10.1109/TBME.2020.3011867

    Article  PubMed  Google Scholar 

  39. Mariani A, et al (2018) Design and evaluation of a performance-based adaptive curriculum for robotic surgical training: a pilot study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference. 2018:2162–2165. https://doi.org/10.1109/EMBC.2018.8512728

  40. Mustafa S et al (2019) Robotic curriculum enhances minimally invasive general surgery residents’ education. J Surg Educ 76(2):548–553. https://doi.org/10.1016/j.jsurg.2018.08.020

    Article  PubMed  Google Scholar 

  41. Raison N et al (2017) Competency based training in robotic surgery: benchmark scores for virtual reality robotic simulation. BJU Int 119(5):804–811. https://doi.org/10.1111/bju.13710

    Article  PubMed  Google Scholar 

  42. Raza SJ et al (2014) Construct validation of the key components of fundamental skills of robotic surgery (FSRS) curriculum—a multi-institution prospective study. J Surg Educ 71(3):316–324. https://doi.org/10.1016/j.jsurg.2013.10.006

    Article  PubMed  Google Scholar 

  43. Rusch P, Verheijen RHM (2018) The Society of European Robotic Gynaecological Surgery (SERGS) pilot curriculum for robot-assisted gynaecological surgery: authors’ reply to a letter to the editor. Arch Gynecol Obstet 297(6):1597. https://doi.org/10.1007/s00404-017-4612-5

    Article  PubMed  Google Scholar 

  44. Shay SG et al (2019) Initial and long-term retention of robotic technical skills in an otolaryngology residency program. Laryngoscope 129(6):1380–1385. https://doi.org/10.1002/lary.27425

    Article  PubMed  Google Scholar 

  45. Shim JS et al (2018) Comparison of effective teaching methods to achieve skill acquisition using a robotic virtual reality simulator: expert proctoring versus an educational video versus independent training. Medicine (Baltimore) 97(51):e13569. https://doi.org/10.1097/MD.0000000000013569

    Article  PubMed  Google Scholar 

  46. Shim JS et al (2018) Predictive validation of a robotic virtual reality simulator: the tube 3 module for practicing vesicourethral anastomosis in robot-assisted radical prostatectomy. Urology 122:32–36. https://doi.org/10.1016/j.urology.2018.08.013

    Article  PubMed  Google Scholar 

  47. Suh I et al (2011) Training program for fundamental surgical skill in robotic laparoscopic surgery. Int J Med Robot 7(3):327–333. https://doi.org/10.1002/rcs.402

    Article  PubMed  Google Scholar 

  48. Tillou X et al (2016) Robotic surgery simulator: elements to build a training program. J Surg Educ 73(5):870–878. https://doi.org/10.1016/j.jsurg.2016.04.008

    Article  PubMed  Google Scholar 

  49. Valdis M et al (2015) Validation of a novel virtual reality training curriculum for robotic cardiac surgery: a randomized trial. Innovations (Phila) 10(6):383–388. https://doi.org/10.1097/IMI.0000000000000222

    Article  PubMed  Google Scholar 

  50. Vargas MV et al (2017) Transferability of virtual reality, simulation-based, robotic suturing skills to a live porcine model in novice surgeons: a single-blind randomized controlled trial. J Minim Invasive Gynecol 24(3):420–425. https://doi.org/10.1016/j.jmig.2016.12.016

    Article  PubMed  Google Scholar 

  51. Volpe A et al (2015) Pilot validation study of the European association of urology robotic training curriculum. Eur Urol 68(2):292–299. https://doi.org/10.1016/j.eururo.2014.10.025

    Article  PubMed  Google Scholar 

  52. Walliczek U et al (2016) Effect of training frequency on the learning curve on the da Vinci Skills Simulator. Head Neck 38(Suppl 1):E1762–E1769. https://doi.org/10.1002/hed.24312

    Article  PubMed  Google Scholar 

  53. Walliczek-Dworschak U et al (2017) The effect of different training exercises on the performance outcome on the da Vinci Skills Simulator. Surg Endosc 31(6):2397–2405. https://doi.org/10.1007/s00464-016-5240-z

    Article  CAS  PubMed  Google Scholar 

  54. White J, Sharma A (2018) Development and assessment of a transoral robotic surgery curriculum to train otolaryngology residents. ORL 80(2):69–76. https://doi.org/10.1159/000479744

    Article  PubMed  Google Scholar 

  55. Wiener S et al (2015) Construction of a urologic robotic surgery training curriculum: how many simulator sessions are required for residents to achieve proficiency? J Endourol 29(11):1289–1293. https://doi.org/10.1089/end.2015.0392

    Article  PubMed  Google Scholar 

  56. Perrenot C et al (2012) The virtual reality simulator dV-Trainer® is a valid assessment tool for robotic surgical skills. Surg Endosc 26(9):2587–2593. https://doi.org/10.1007/s00464-012-2237-0

    Article  PubMed  Google Scholar 

  57. Lee CS et al (2022) Model development of a novel robotic surgery training exercise with electrocautery. Cureus. https://doi.org/10.7759/cureus.24531

    Article  PubMed  PubMed Central  Google Scholar 

  58. Patnaik R et al (2022) Building a low-cost and low-fidelity kidney transplant model: a technical report on the san antonio kidney transplant model. Cureus. https://doi.org/10.7759/cureus.23883

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hogg ME et al (2017) Mastery-based virtual reality robotic simulation curriculum: the first step toward operative robotic proficiency. J Surg Educ 74(3):477–485. https://doi.org/10.1016/j.jsurg.2016.10.015

    Article  PubMed  Google Scholar 

  60. Aghazadeh MA et al (2015) External validation of global evaluative assessment of robotic skills (GEARS). Surg Endosc 29(11):3261–3266. https://doi.org/10.1007/s00464-015-4070-8

    Article  PubMed  Google Scholar 

  61. Messick S (1998) Test validity: a matter of consequence. Soc Indic Res 45(1):35–44. https://doi.org/10.1023/A:1006964925094

    Article  Google Scholar 

  62. Kotsis SV, Chung KC (2013) Application of see one, do one, teach one concept in surgical training. Plast Reconstr Surg 131(5):1194. https://doi.org/10.1097/PRS.0b013e318287a0b3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cameron JL (1997) William Stewart Halsted. Our surgical heritage. Annals Surg 225(5):445. https://doi.org/10.1097/00000658-199705000-00002

    Article  CAS  Google Scholar 

  64. Bandura A (2009) Social cognitive theory of mass communication. Routledge, Media Effects, pp 110–140. https://doi.org/10.1207/S1532785XMEP0303_03

    Book  Google Scholar 

  65. Issenberg SB, McGaghie WC (2013) Looking to the future. International best practices for evaluation in the health professions. Radcliffe Publishing Ltd, London, p 344

    Google Scholar 

  66. Gallagher AG et al (2005) Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg 241(2):364. https://doi.org/10.1097/01.sla.0000151982.85062.80

    Article  PubMed  PubMed Central  Google Scholar 

  67. Scott DJ, Dunnington GL (2008) The new ACS/APDS skills curriculum: moving the learning curve out of the operating room. J Gastrointest Surg 12(2):213–221. https://doi.org/10.1007/s11605-007-0357-y

    Article  PubMed  Google Scholar 

  68. Barsuk JH et al (2017) Residents’ procedural experience does not ensure competence: a research synthesis. J Grad Med Educ 9(2):201–208. https://doi.org/10.4300/JGME-D-16-00426.1

    Article  PubMed  PubMed Central  Google Scholar 

  69. Brunner WC et al (2004) Laparoscopic virtual reality training: are 30 repetitions enough? J Surg Res 122(2):150–156

    Article  PubMed  Google Scholar 

  70. Rashid P (2017) Surgical education and adult learning: integrating theory into practice. F1000Research. https://doi.org/10.12688/f1000research.10870.1

    Article  PubMed  PubMed Central  Google Scholar 

  71. Patnaik R, Stefanidis D (2019) Outcome-based training and the role of simulation. In: Comprehensive healthcare simulation: surgery and surgical subspecialties. Springer, p. 69–78. https://doi.org/10.1007/978-3-319-98276-2_7

  72. Holst D et al (2015) Crowd-sourced assessment of technical skills: an adjunct to urology resident surgical simulation training. J Endourol 29(5):604–609. https://doi.org/10.1089/end.2014.0616

    Article  PubMed  Google Scholar 

  73. Lendvay TS, White L, Kowalewski T (2015) Crowdsourcing to assess surgical skill. JAMA Surg 150(11):1086–1087. https://doi.org/10.1001/jamasurg.2015.2405

    Article  PubMed  Google Scholar 

  74. Chen C et al (2014) Crowd-sourced assessment of technical skills: a novel method to evaluate surgical performance. J Surg Res 187(1):65–71. https://doi.org/10.1016/j.jss.2013.09.024

    Article  PubMed  Google Scholar 

  75. Vassiliou MC et al (2010) FLS and FES: comprehensive models of training and assessment. Surg Clin 90(3):535–558. https://doi.org/10.1016/j.suc.2010.02.012

    Article  Google Scholar 

  76. Vassiliou MC et al (2014) Fundamentals of endoscopic surgery: creation and validation of the hands-on test. Surg Endosc 28(3):704–711. https://doi.org/10.1007/s00464-013-3298-4

    Article  PubMed  Google Scholar 

  77. Goova MT et al (2008) Implementation, construct validity, and benefit of a proficiency-based knot-tying and suturing curriculum. J Surg Educ 65(4):309–315. https://doi.org/10.1016/j.jsurg.2008.04.004

    Article  PubMed  Google Scholar 

  78. Green CA et al (2020) The current state of surgeon credentialing in the robotic era. Annals Laparosc Endosc Surg. https://doi.org/10.2103/ales.2019.11.06

    Article  Google Scholar 

  79. Torrent-Sellens J, Jiménez-Zarco AI, Saigí-Rubió F (2021) Do people trust in robot-assisted surgery? Evidence from Europe. Int J Environ Res Public Health 18(23):12519. https://doi.org/10.3390/ijerph182312519

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Defense Health Agency Restoral Grant along with Ruth L Kirschstein NRSA Institutional Research Training Grant (T32CA148724 awarded to Dr. Mustafa T.A. Khan) for their support of this work along with the Brooke Army Medical Center librarian for performing some of the literature searches.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MK, RP, CL, CW, VD, RK, RL performed literature search, reviewed abstracts, reviewed full papers, wrote main manuscript text. RP prepared Fig. 1. All authors reviewed manuscript.

Corresponding author

Correspondence to Mustafa Tamim Alam Khan.

Ethics declarations

Conflict of interest

We do not have any relevant financial disclosures or conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.T.A., Patnaik, R., Lee, C.S. et al. Systematic review of academic robotic surgery curricula. J Robotic Surg 17, 719–743 (2023). https://doi.org/10.1007/s11701-022-01500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-022-01500-y

Keywords

Navigation