Skip to main content

Advertisement

Log in

Feasibility and safety of the da Vinci Xi surgical robot for transoral robotic surgery

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

The collective experience supporting the safety and efficacy of transoral robotic surgery continues to grow. The surgical robot da Vinci Xi has been used successfully off-label for head and neck surgery, including transoral robotic surgery. We evaluated operative outcomes and efficacy of the da Vinci Xi surgical robot for transoral surgery and compared our experience with the da Vinci Si and published da Vinci Xi experiences in transoral surgery. Nineteen total cases were retrospectively reviewed, six with the Si and thirteen with the Xi. Our experience with the da Vinci Xi showed similar peri- and postoperative outcomes to our Si experience the available da Vinci Xi literature. We advocate for careful patient selection while also considering the surgical team’s experience with TORS. Transoral robotic surgery with the da Vinci Xi has specific advantages, and support is accumulating for its use in TORS. However, this indication remains off-label, and we do not anticipate the manufacturer will seek approval for this indication given the ongoing development and regulatory approvals of da Vinci Single Port for similar indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  2. Lewin F, Norell SE, Johansson H, Gustavsson P, Wennerberg J, Biorklund A et al (1998) Smoking tobacco, oral snuff, and alcohol in the etiology of squamous cell carcinoma of the head and neck: a population-based case-referent study in Sweden. Cancer 82(7):1367–1375

    Article  CAS  PubMed  Google Scholar 

  3. Van Dyne EA, Henley SJ, Saraiya M, Thomas CC, Markowitz LE, Benard VB (2018) Trends in human papillomavirus-associated cancers-United States, 1999–2015. MMWR Morb Mortal Wkly Rep 67(33):918–924

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sinha P, Karadaghy OA, Doering MM, Tuuli MG, Jackson RS, Haughey BH (2018) Survival for HPV-positive oropharyngeal squamous cell carcinoma with surgical versus non-surgical treatment approach: a systematic review and meta-analysis. Oral Oncol 86:121–131

    Article  PubMed  Google Scholar 

  5. Jackson RS, Sinha P, Zenga J, Kallogjeri D, Suko J, Martin E et al (2017) Transoral resection of human papillomavirus (HPV)-positive squamous cell carcinoma of the oropharynx: outcomes with and without adjuvant therapy. Ann Surg Oncol 24(12):3494–3501

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alessandrini M, Pavone I, Micarelli A, Caporale C (2018) Transoral robotic surgery for the base of tongue squamous cell carcinoma: a preliminary comparison between da Vinci Xi and Si. J Robot Surg 12(3):417–423

    Article  PubMed  Google Scholar 

  7. Gabrysz-Forget F, Mur T, Dolan R, Yarlagadda B (2020) Perioperative safety, feasibility, and oncologic utility of transoral robotic surgery with da Vinci Xi platform. J Robot Surg 14(1):85–89

    Article  PubMed  Google Scholar 

  8. Gorphe P, Von Tan J, El Bedoui S, Hartl DM, Auperin A, Qassemyar Q et al (2017) Early assessment of feasibility and technical specificities of transoral robotic surgery using the da Vinci Xi. J Robot Surg 11(4):455–461

    Article  PubMed  Google Scholar 

  9. Meulemans J, Vanermen M, Goeleven A, Clement P, Nuyts S, Laenen A et al (2022) Transoral robotic surgery (TORS) using the da Vinci Xi: prospective analysis of feasibility, safety, and outcomes. Head Neck 44(1):143–157

    Article  PubMed  Google Scholar 

  10. van der Schans EM, Hiep MAJ, Consten ECJ, Broeders I (2020) From Da Vinci Si to Da Vinci Xi: realistic times in draping and docking the robot. J Robot Surg 14(6):835–839

    Article  PubMed  PubMed Central  Google Scholar 

  11. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG (2009) Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 42(2):377–381

    Article  PubMed  Google Scholar 

  12. Stokes W, Ramadan J, Lawson G, Ferris FRL, Holsinger FC, Turner MT (2021) Bleeding complications after transoral robotic surgery: a meta-analysis and systematic review. Laryngoscope 131(1):95–105

    Article  PubMed  Google Scholar 

  13. Van Abel KM, Quick MH, Graner DE, Lohse CM, Price DL, Price KAR et al (2019) Outcomes following TORS for HPV-positive oropharyngeal carcinoma: PEGs, tracheostomies, and beyond. Am J Otolaryngol 40(5):729–734

    Article  PubMed  Google Scholar 

  14. de Almeida JR, Byrd JK, Wu R, Stucken CL, Duvvuri U, Goldstein DP et al (2014) A systematic review of transoral robotic surgery and radiotherapy for early oropharynx cancer: a systematic review. Laryngoscope 124(9):2096–2102

    Article  PubMed  Google Scholar 

  15. Hanna J, Morse E, Brauer PR, Judson B, Mehra S (2019) Positive margin rates and predictors in transoral robotic surgery after federal approval: a national quality study. Head Neck 41(9):3064–3072

    Article  PubMed  Google Scholar 

  16. Albergotti WG, Gooding WE, Kubik MW, Geltzeiler M, Kim S, Duvvuri U et al (2017) Assessment of surgical learning curves in transoral robotic surgery for squamous cell carcinoma of the oropharynx. JAMA Otolaryngol Head Neck Surg 143(6):542–548

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lawson G, Matar N, Remacle M, Jamart J, Bachy V (2011) Transoral robotic surgery for the management of head and neck tumors: learning curve. Eur Arch Otorhinolaryngol 268(12):1795–1801

    Article  PubMed  Google Scholar 

  18. White HN, Frederick J, Zimmerman T, Carroll WR, Magnuson JS (2013) Learning curve for transoral robotic surgery: a 4-year analysis. JAMA Otolaryngol Head Neck Surg 139(6):564–567

    PubMed  Google Scholar 

  19. Bur AM, Gomez ED, Newman JG, Weinstein GS, O’Malley BW Jr, Rassekh CH et al (2017) Evaluation of high-fidelity simulation as a training tool in transoral robotic surgery. Laryngoscope 127(12):2790–2795

    Article  PubMed  Google Scholar 

  20. Zhang N, Sumer BD (2013) Transoral robotic surgery: simulation-based standardized training. JAMA Otolaryngol Head Neck Surg 139(11):1111–1117

    Article  PubMed  Google Scholar 

  21. O'Malley Jr B, Weinstein G (2008) DaVinci Transoral Surgery Procedure Guide: Intuitive Surgical. https://oto.med.upenn.edu/wp-content/uploads/sites/25/2016/06/daVinciTORSProcedureGuide.pdf. Accessed 20 July 2022

  22. Weinstein GS, O’Malley BW Jr, Rinaldo A, Silver CE, Werner JA, Ferlito A (2015) Understanding contraindications for transoral robotic surgery (TORS) for oropharyngeal cancer. Eur Arch Otorhinolaryngol 272(7):1551–1552

    Article  PubMed  Google Scholar 

  23. Baskin RM, Boyce BJ, Amdur R, Mendenhall WM, Hitchcock K, Silver N et al (2018) Transoral robotic surgery for oropharyngeal cancer: patient selection and special considerations. Cancer Manag Res 10:839–846

    Article  PubMed  PubMed Central  Google Scholar 

  24. Acar HV, YarkanUysal H, Kaya A, Ceyhan A, Dikmen B (2014) Does the STOP-bang, an obstructive sleep apnea screening tool, predict difficult intubation? Eur Rev Med Pharmacol Sci 18(13):1869–1874

    CAS  PubMed  Google Scholar 

  25. Gaino F, Gorphe P, Vander Poorten V, Holsinger FC, Lira RB, Duvvuri U et al (2021) Preoperative predictors of difficult oropharyngeal exposure for transoral robotic surgery: the pharyngoscore. Head Neck 43(10):3010–3021

    Article  PubMed  Google Scholar 

  26. Hay A, Migliacci J, KarassawaZanoni D, Boyle JO, Singh B, Wong RJ et al (2017) Complications following transoral robotic surgery (TORS): a detailed institutional review of complications. Oral Oncol 67:160–166

    Article  PubMed  PubMed Central  Google Scholar 

  27. Iowa Head and Neck Protocols: Transoral Robotic Surgery medicine.uiowa.edu2017 [updated 6/5/17]. https://medicine.uiowa.edu/iowaprotocols/transoral-robotic-surgery. Accessed 20 July 2022

  28. Ferguson JM, Pitt B, Kuntz A, Granna J, Kavoussi NL, Nimmagadda N et al (2020) Comparing the accuracy of the da Vinci Xi and da Vinci Si for image guidance and automation. Int J Med Robot 16(6):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ngu JC, Tsang CB, Koh DC (2017) The da Vinci Xi: a review of its capabilities, versatility, and potential role in robotic colorectal surgery. Robot Surg 4:77–85

    PubMed  PubMed Central  Google Scholar 

  30. Fiacchini G, Vianini M, Dallan I, Bruschini L (2021) Is the Da Vinci Xi system a real improvement for oncologic transoral robotic surgery? A systematic review of the literature. J Robot Surg 15(1):1–12

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All listed authors participated in the design, conduct, analysis, and manuscript drafting for this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Matin Imanguli.

Ethics declarations

Conflict of interest

The authors have no financial relationships or conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olson, B., Cahill, E. & Imanguli, M. Feasibility and safety of the da Vinci Xi surgical robot for transoral robotic surgery. J Robotic Surg 17, 571–576 (2023). https://doi.org/10.1007/s11701-022-01449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-022-01449-y

Keywords

Navigation