Skip to main content

Advertisement

Log in

Unlocking the potential of RNAi as a therapeutic strategy against infectious viruses: an in-silico study

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

RNA interference is an upcoming methodology being designed to specifically target viral infections. The current study suggests a strategy to design probable small interfering RNAs (siRNA) for targeting the viral genome of SARS-CoV-2, as a case study. siRNAs were designed against the targets from a highly conserved region of the spike gene of SARS-CoV-2 having no significant matches within the human genome. Four targets/viral RNAs (vRNA) with high predicted inhibition values were selected for further evaluation. The predicted siRNAs were examined for their properties and stability using molecular dynamics (MD) simulations. Further, to understand the RNA-Induced Silencing Complex (RISC) mechanism of the predicted siRNA targets of SARS-CoV-2, the human argonaute (Ago2) protein in complex with the four siRNA-vRNA duplexes was built. MD simulations of apo-Ago2, four selected siRNA-vRNA duplexes and four Ago2 bound to these siRNA-vRNA duplexes were carried out for 1 μs each. Amongst the four duplex-bound Ago2 simulation systems, the siRNA-vRNA3 duplex showed stable base pairing in the seed region, favourable and strong interactions with functionally important residues of Ago2 protein through the simulation length. Therefore, the designed siRNA3 molecule may act as an effective therapeutic agent against the SARS-CoV-2. The reported in-silico strategy may be beneficial for the identification and designing of probable siRNAs against any viral genome in RNAi therapeutics. However, the experimental validation of these molecules would be required for proving their use as therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amadei A, Linssen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17(4):412–425. https://doi.org/10.1002/prot.340170408

    Article  PubMed  CAS  Google Scholar 

  • Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058. https://doi.org/10.1016/j.bbrc.2004.02.157

    Article  PubMed  CAS  Google Scholar 

  • Apparailly F, Jorgensen C (2012) siRNA-based therapeutic approaches for rheumatic diseases. Nature reviews Rheumatology.

  • Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33:545–557

    PubMed  CAS  Google Scholar 

  • Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41(W1):W471–W474

    PubMed  PubMed Central  Google Scholar 

  • Berkhout B (2009) Toward a Durable Anti-HIV Gene Therapy Based on RNA Interference. Ann N Y Acad Sci 1175:3–14

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. https://doi.org/10.1038/35053110

    Article  ADS  PubMed  CAS  Google Scholar 

  • Bhandare V, Ramaswamy A (2016) Structural dynamics of human argonaute2 and its interaction with siRNAs designed to target mutant tdp43. Advances in bioinformatics, 2016.

  • Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D et al (2007) A protocol for designing sirnas with high functionality and specificity. Nat Protoc 2(9):2068–2078. https://doi.org/10.1038/nprot.2007.278

    Article  PubMed  CAS  Google Scholar 

  • Boden D, Pusch O, Lee F, Tucker L, Ramratnam B (2003) Human Immunodeficiency Virus Type 1 Escape from RNA Interference. J Virol 77:11531–11535

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796. https://doi.org/10.1038/nchembio.232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE et al (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

  • Case DA, Aktulga HM, Belfon B-S, Brozell SR, Cerutti DS, Cheatham TE III, Cisneros GA, Cruzeiro VWD, Darden TA, Duke RE, Giambasu G, Gilson MK, Gohlke H, Goetz AW, Harris R, Izadi S, Izmailov SA, Jin C, Kasavajhala K, Kaymak MC, King E, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Machado M, Man V, Manathunga M, Merz KM, Miao Y, Mikhailovskii O, Monard G, Nguyen H, O’Hearn KA, Onufriev A, Pan F, Pantano S, Qi R, Rahnamoun A, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Skrynnikov NR, Smith J, Swails J, Walker RC, Wang J, Wei JH, Wolf RM, Wu X, Xue Y, York DM, Zhao S, Kollman PA (2021) Amber 2021. University of California, San Francisco

    Google Scholar 

  • Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143. https://doi.org/10.1016/j.omtn.2017.06.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, Yuen KY (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9:221–236

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chan CY, Carmack CS, Long DD, Maliyekkel A, Shao Y, Roninson IB, Ding Y (2009) A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics (10 Suppl 1), S33. https://doi.org/10.1186/1471-2105-10-s1-s33

  • Chandra PK, Kundu AK, Hazari S, Chandra S, Bao L, Ooms T, Morris GF, Wu T, Mandal T, Dash S (2012) Inhibition of Hepatitis C Virus Replication by Intracellular Delivery of Multiple siRNAs by Nanosomes. Mol Ther 20:1724–1736

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chang Z, Babiuk LA, Hu J (2007) Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: Progress to date. BioDrugs 21:9–15

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Cheng G, Mahato RI (2008) RNAi for Treating Hepatitis B Viral Infection. Pharm Res 25:72–86

    PubMed  CAS  Google Scholar 

  • Chen W, Feng P, Liu K, Wu M, Lin H (2020) Computational identification of small interfering RNA targets in SARS-CoV-2. Virologica Sinica 35(3):359–361

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cherian SS, Agrawal M, Basu A, Abraham P, Gangakhedkar RR, Bhargava B (2020) Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J Med Res 151(2–3):160. https://doi.org/10.4103/ijmr.IJMR_585_20. (PMID: 32317408)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chowdhury UF, Shohan MUS, Hoque KI, Beg MA, Siam MKS, Moni MA (2021) A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycoprotein gene of SARS-CoV-2. Genomics 113(1):331–343

    PubMed  CAS  Google Scholar 

  • Dal-Ré R, Banzi R, Georgin-Lavialle S, Porcher R, Sofat R, Zeitlinger M, Rosendaal FR (2021) Remdesivir for COVID-19 in Europe: Will it provide value for money? Lancet Respir. Med 9:127–128

    Google Scholar 

  • Dana H et al (2017) Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci 13:48–57

    PubMed  PubMed Central  Google Scholar 

  • Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B (2004) Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition. J Virol 78:2601–2605

    PubMed  PubMed Central  CAS  Google Scholar 

  • Deerberg A, Willkomm S, Restle T (2013) Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human Argonaute 2 protein. Proc Natl Acad Sci 110(44):17850–17855

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200. https://doi.org/10.1101/gad.862301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818–822

    ADS  PubMed  CAS  Google Scholar 

  • GetContacts: https://getcontacts.github.io/

  • Haasnoot J, Berkhout B (2009) Nucleic acids-based therapeutics in the battle against pathogenic viruses. Cytochrome P450(189):243–263

    Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila Cells. Nature 404:293–296. https://doi.org/10.1038/35005107

    Article  ADS  PubMed  CAS  Google Scholar 

  • Harikrishna S, Pradeepkumar PI (2017) Probing the binding interactions between chemically modified siRNAs and human argonaute 2 using microsecond molecular dynamics simulations. J Chem Inf Model 57(4):883–896

    PubMed  CAS  Google Scholar 

  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181:271-280.e8

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hu B, Weng Y, Xia XH, Liang XJ, Huang Y (2019) Clinical advances of siRNA therapeutics. J Gene Med 21:e3097. https://doi.org/10.1002/jgm.3097

    Article  PubMed  Google Scholar 

  • Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ (2020) Therapeutic siRNA: state of the art. Signal Transduct Target Ther 5:1–25

    Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    PubMed  CAS  Google Scholar 

  • Iwakawa HO, Tomari Y (2022) Life of RISC: formation, action, and degradation of RNA-induced silencing complex. Mol Cell 82(1):30–43. https://doi.org/10.1016/j.molcel.2021.11.026

    Article  PubMed  CAS  Google Scholar 

  • Jaskiewicz L, Filipowicz W (2008) Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320:77–97

    PubMed  CAS  Google Scholar 

  • Jo WK, Drosten C, Drexler JF (2021) The evolutionary dynamics of endemic human coronaviruses. Virus Evol. 7:veab020

    PubMed  PubMed Central  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucl Acids Res 36(suppl_2):W5–W9

    PubMed Central  CAS  Google Scholar 

  • Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucl Acids Res 35(2):43–46

    ADS  Google Scholar 

  • Kitade Y, Akao Y (2010) MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and -145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug. J Pharmacol Sci 114:276–280

    PubMed  Google Scholar 

  • Kobayashi Y, Fukuhara D, Akase D, Aida M, Ui-Tei K (2022) siRNA seed region is divided into two functionally different domains in RNA interference in response to 2’-OMe modifications. ACS Omega 7(2):2398–2410. https://doi.org/10.1021/acsomega.1c06455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konstantinidou SK, Papanastasiou IP (2020) Repurposing current therapeutic regimens against SARS-CoV-2 (Review). Exp Ther Med 20:1845–1855

    CAS  Google Scholar 

  • Koscianska E, Starega-Roslan J, Krzyzosiak WJ (2011) The role of Dicer protein partners in the processing of microRNA precursors. PLoS ONE 6:e28548

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Koulgi S, Jani V, Uppuladinne MVN, Sonavane U, Joshi R (2020) Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Adv 10(45):26792–26803. https://doi.org/10.1039/d0ra04743k

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Koulgi S, Jani V, Mallikarjunachari Uppuladinne VN, Sonavane U, Joshi R (2022) Structural insight into the binding interactions of NTPs and nucleotide analogues to RNA dependent RNA polymerase of SARS-CoV-2. J Biomol Struct Dyn 40(16):7230–7244. https://doi.org/10.1080/07391102.2021.1894985

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Lata S, Raghava GPS (2009) siRNApred: SVM based method for predicting efficacy value of siRNA. Proceedings of the OSCADD-2009: International conference on open source for computer aided drug discovery: IMTECH, Chandigarh.

  • Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed 48:1378–1398

    CAS  Google Scholar 

  • Levanova A, Poranen M (2018) RNA interference as a prospective tool for the control of human viral infections. Front Microbiol 9:2151

    PubMed  PubMed Central  Google Scholar 

  • Li G, De Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19:149–150. https://doi.org/10.1038/d41573-020-00016-0

    Article  PubMed  CAS  Google Scholar 

  • Lima WF, Wu H, Nichols JG, Sun H, Murray HM, Crooke ST (2009) Binding and cleavage specificities of human Argonaute2. J Biol Chem 284(38):26017–26028

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11:576–577

    PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    ADS  PubMed  CAS  Google Scholar 

  • Lu XJ, Olson WK (2008) 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc 3(7):1213–1227

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lu ZJ, Gloor JW, Mathews DH (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA 15(10):1805–1813

    PubMed  PubMed Central  CAS  Google Scholar 

  • Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD et al (2020) The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. J Neuroimmune Pharmacol 15:359–386

    PubMed  PubMed Central  Google Scholar 

  • Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

    PubMed  PubMed Central  CAS  Google Scholar 

  • Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581. https://doi.org/10.1093/nar/gki591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    PubMed  CAS  Google Scholar 

  • Naqvi AA, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, Atif SM, Hariprasad G, Hasan GM (1866) Hassan MI (2020) Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Mole Basis Disease 1866(10):165878

    Google Scholar 

  • Neumeier J, Meister G (2021) siRNA specificity: RNAi mechanisms and strategies to reduce off-target effects. Front Plant Sci 11:526455

    PubMed  PubMed Central  Google Scholar 

  • Noguchi S, Mori T, Hoshino Y, Maruo K, Yamada N et al (2011) MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett 307:211–220

    PubMed  CAS  Google Scholar 

  • Pal M, Berhanu G, Desalegn C, Kandi V (2020) Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an update. Cureus 12(3)

  • Park MS, Araya-Secchi R, Brackbill JA, Phan HD, Kehling AC, Abd El-Wahab EW, Dayeh DM, Sotomayor M, Nakanishi K (2019) Multidomain convergence of Argonaute during RISC assembly correlates with the formation of internal water clusters. Mol Cell 75(4):725–740

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    PubMed  CAS  Google Scholar 

  • Piekna-Przybylska D, DiChiacchio L, Mathews DH, Bambara RA (2010) A sequence similar to tRNA3Lys gene is embedded in HIV-1 U3–R and promotes minus-strand transfer. Nat Struct Mol Biol 17:83–90. https://doi.org/10.1038/nsmb.1687

    Article  PubMed  CAS  Google Scholar 

  • Pradhan P, Pandey AK, Mishra A, Gupta P, Tripathi PK, Menon MB, Gomes J, Vivekanandan P, Kundu B (2020) Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag

  • Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284(27):17897–17901

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pruijssers AJ, George AS, Schäfer A, Leist SR, Gralinksi LE, Dinnon KH, Yount BL, Agostini ML, Stevens LJ, Chappell JD, Lu X (2020) Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep 32(3):107940

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qureshi A, Thakur N, Kumar M (2013) VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses. J Transl Med 11(1):305. https://doi.org/10.1186/1479-5876-11-305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621–629

    PubMed  CAS  Google Scholar 

  • Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinform 11:129. https://doi.org/10.1186/1471-2105-11-129

    Article  CAS  Google Scholar 

  • Ritchie H, Mathieu E, Rodés-Guirao L, Appel C, Giattino C, Ortiz-Ospina E, Hasell J, Macdonald B, Beltekian D, Roser M (2020) Coronavirus pandemic (COVID-19). OurWorldInData.org. https://ourworldindata.org/coronavirus

  • Roe DR, Cheatham TE 3rd (2018) Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. J Comput Chem 39(25):2110–2117

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saadat KA (2022) RNAi-mediated siRNA sequences to combat the COVID-19 pandemic with the inhibition of SARS-CoV2. Gene Reports 101512

  • Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Chakraborty C (2020a) Probable molecular mechanism of remdesivir for the treatment of COVID-19: need to know more. Arch Med Res 51(6):585–586

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saha A, Sharma AR, Bhattacharya M, Sharma G, Lee SS, Chakraborty C (2020b) Tocilizumab: a therapeutic option for the treatment of cytokine storm syndrome in COVID-19. Arch Med Res 51(6):595–597

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C (2020c) Repurposing drugs, ongoing vaccine, and new therapeutic development initiatives against COVID-19. Front Pharmacol 11:1258

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schaar K, Geisler A, Kraus M, Pinkert S, Pryshliak M, Spencer JF, Tollefson AE, Ying B, Kurreck J, Wold WS, Klopfleisch R (2017) Anti-adenoviral artificial microRNAs expressed from AAV9 vectors inhibit human adenovirus infection in immunosuppressed Syrian hamsters. Mole Therapy-Nucleic Acids 8:300–316

    CAS  Google Scholar 

  • Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute2. Science 336(6084):1037–1040

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Schubert S, Grünweller A, Erdmann VA, Kurreck J (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893. https://doi.org/10.1016/j.jmb.2005.03.011

    Article  PubMed  CAS  Google Scholar 

  • Setten RL, Rossi JJ, Han SP (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18:421–446. https://doi.org/10.1038/s41573-019-0017-4

    Article  PubMed  CAS  Google Scholar 

  • Shawan MM, Sharma AR, Bhattacharya M, Mallik B, Akhter F, Shakil MS, Hossain MM, Banik S, Lee SS, Hasan MA, Chakraborty C (2021) Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. Infect Genet Evol 93:104951

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sheu-Gruttadauria J, MacRae IJ (2017) Structural foundations of RNA silencing by Argonaute. J Mol Biol 429(17):2619–2639. https://doi.org/10.1016/j.jmb.2017.07.018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S, Gupta SK, Nischal A, Khattri S, Nath R, Pant KK, Seth PK (2012) Design of potential siRNA molecules for hepatitis delta virus gene silencing. Bioinformation 8:749–757. https://doi.org/10.6026/97320630008749

    Article  PubMed  PubMed Central  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437

    ADS  PubMed  CAS  Google Scholar 

  • Stein EA, Pinkert S, Becher PM, Geisler A, Zeichhardt H, Klopfleisch R, Poller W, Tschöpe C, Lassner D, Fechner H, Kurreck J (2015) Combination of RNA interference and virus receptor trap exerts additive antiviral activity in coxsackievirus B3-induced myocarditis in mice. J Infect Dis 211(4):613–622

    PubMed  CAS  Google Scholar 

  • Suzuki H, Saitoh H, Suzuki T, Takaku H (2009) Baculovirus-mediated bispecific short-hairpin small-interfering RNAs have remarkable ability to cope with both influenza viruses A and B. Oligonucleotides 19(4):307–316

    PubMed  CAS  Google Scholar 

  • Tolksdorf B, Nie C, Niemeyer D, Röhrs V, Berg J, Lauster D, Adler JM, Haag R, Trimpert J, Kaufer B, Drosten C (2021) Inhibition of SARS-CoV-2 replication by a small interfering RNA targeting the leader sequence. Viruses 13(10):2030

    PubMed  PubMed Central  CAS  Google Scholar 

  • Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2):281–292

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wan J, Xing S, Ding L, Wang Y, Gu C, Wu Y, Rong B, Li C, Wang S, Chen K (2020) He C (2020) Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection. Cell Rep 32(3):107918

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Li LC (2012) Small RNA and its application in andrology and urology. Trans Androl Urol 1:33–43

    CAS  Google Scholar 

  • Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456(7219):209–213

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ (2009) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461(7265):754–761

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Shi J, Zhang H, Li H, Gao Y et al (2013) Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34:262–274

    PubMed  CAS  Google Scholar 

  • Werk D, Schubert S, Lindig V, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2005) Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor. Biol Chem 386(9):857–863

    PubMed  CAS  Google Scholar 

  • Wilson JA, Richardson CD (2005) Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 79:7050–7058

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu R, Luo KQ (2021) Developing effective siRNAs to reduce the expression of key viral genes of COVID-19. Int J Biol Sci 17(6):1521

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL (2005) Inhibition of SARS-CoV replication by siRNA. Antivir Res 65:45–48

    PubMed  CAS  Google Scholar 

  • Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y et al (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B 10(5):766–788. https://doi.org/10.1016/j.apsb.2020.02.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan KS, Yan S, Farooq A, Han A, Zeng L et al (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426:468–474

    ADS  PubMed  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33

    PubMed  CAS  Google Scholar 

  • Zgarbová M, Otyepka M, Šponer J, Mládek A, Banáš P, Cheatham TE III, Jurecka P (2011) Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J Chem Theory Comput 7(9):2886–2902

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Bioinformatics Resources and Applications Facility (BRAF), of C-DAC, for providing a supercomputing facility to carry out molecular dynamics simulations. The authors also acknowledge National Supercomputing Mission (NSM), India & Ministry of Electronics and Information Technology (MeitY), and Department of Science and Technology (DST) for the support to perform R&D work at C-DAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra Joshi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 7335 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uppuladinne, M.V.N., Koulgi, S., Jani, V. et al. Unlocking the potential of RNAi as a therapeutic strategy against infectious viruses: an in-silico study. Chem. Pap. 78, 1537–1552 (2024). https://doi.org/10.1007/s11696-023-03180-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03180-w

Keywords

Navigation