Skip to main content

Advertisement

Log in

A review of volumetric titration as an efficient method for the quantification of ions and compounds in lithium-ion battery components

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In upgrading lithium-ion batteries, which today occupy a large share of the commercial battery market, preventing the degradation of components is a general solution. For this purpose, it is essential to accurately identify the factors affecting the performance of the components. Knowing the composition of the cathode material, the content of residual lithium on the surface of the cathode material, the ion exchange capacity of the separator, the concentration of ions during material synthesis, the content of functional groups in the carbon material, and the average valence of the metal ion can be useful in selecting materials and improving cell performance. Knowing the amount of carbon dioxide produced in the cell and the amount of hydrofluoric acid produced in the electrolyte is effective in reducing the rate of aging and avoiding battery safety risks. These items can be measured through various spectroscopic methods such as inductively coupled plasma (ICP) and X-ray photoelectron spectroscopy (XPS), chromatography approaches, and volumetric titration techniques. However, spectroscopic and chromatographic methods can be expensive, complicated, and poorly reproducible. Volumetric titration methods used include acid–base, complexometric, and oxidation–reduction titrations. Here, the inexpensive, simple, and practical methods of volumetric titration used in the identification of lithium-ion battery components are reviewed for the first time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectroscopy

CE:

Capillary electrophoresis

DMC:

Dimethyl carbonate

EDAX:

Energy-dispersive X-ray analysis

EDS:

Energy-dispersive X-ray spectroscopy

EDTA:

Ethylenediaminetetraacetic acid

EP:

Endpoint

EqC:

Equilibrium cell

FTIR:

Fourier-transform infrared spectroscopy

GC:

Gas chromatography

GC–MS:

Gas chromatography–mass spectrometry

HPLC:

High-performance liquid chromatography

IC:

Ion chromatography

ICP-AES:

Inductively coupled plasma-atomic emission spectroscopy

ICP-MS:

Inductively coupled plasma-mass spectrometry

ICP-OES:

Inductively coupled plasma-optical emission spectrometry

IEC:

Ion exchange capacity

LiBOB:

Lithium bis(oxalato)borate

NCA:

LiNi0.8Co0.15Al0.05O2

NMC:

Lithium nickel manganese cobalt oxide

NMR:

Nuclear magnetic resonance

PI:

Polyimide

PID:

Proportional–integral–derivative

PVDF :

Polyvinylidene difluoride

TGA–MS:

Thermogravimetric analysis–mass spectrometry

ToF-SIMS:

Time-of-flight secondary ion mass spectrometry

XPS:

X-ray photoelectron spectroscopy

References

  • 906 Titrando manual (2022)Switzerland: Metrohm

  • Abu-Shandi K, Al-Wedian F (2009) Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements. Chem Pap 63(4):420–425

    CAS  Google Scholar 

  • Amini F, Jafari A, Amini P, Sepasi S (2012) Metal ion release from fixed orthodontic appliances: an in vivo study. Eur J Orthod 34(1):126–130

    PubMed  Google Scholar 

  • Amirshekari S, Riahifar R, Raissi B, Sahba YM (2023) Predicting the stoichiometric ratio of synthesized hydroxides in nickel-rich cathode precursors of lithium-ion batteries by using a computational thermodynamics model. Energy Technol 11(4):2201223

    CAS  Google Scholar 

  • Anouti M, Dougassa YR, Tessier C, El Ouatani L, Jacquemin J (2012) Low pressure carbon dioxide solubility in pure electrolyte solvents for lithium-ion batteries as a function of temperature. Measurement and prediction. J Chem Thermodyn 50:71–79

    CAS  Google Scholar 

  • Arai H, Okada S, Ohtsuka H, Ichimura M, Yamaki J (1995) Characterization and cathode performance of Li1xNi1+xO2 prepared with the excess lithium method. Solid State Ionics 80(3–4):261–269

    CAS  Google Scholar 

  • Babaiee M, Zarei-Jelyani M, Baktashian S, Eqra R (2022a) Surface modification of copper current collector to improve the mechanical and electrochemical properties of graphite anode in lithium-ion battery. J Renew Energy Environ 9(1):63–69

    CAS  Google Scholar 

  • Babaiee M, Baktashian S, Zarei-Jelyani M, Eqra R, Gholami M (2022b) High-performance natural graphite anode for lithium-ion batteries: using TiO2 as an additive. ChemistrySelect 7(29):e202201510

    CAS  Google Scholar 

  • Broekaert JA, Daniel C (2015) Harris: quantitative chemical analysis. Springer

    Google Scholar 

  • Brown TL, LeMay Jr HE, Bursten BE, Murphy CJ, Woodward PM, Stoltzfus MW (2019) Chemistry: the central science. 13th ed. Pearson

  • Chemistry MG (2014) Compendium of chemical terminology: Gold book. 2.3.3 ed. International Union of Pure and Applied Chemistry

  • Chen S, He T, Su Y, Lu Y, Bao L, Chen L et al (2017) Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29732–29743

    CAS  PubMed  Google Scholar 

  • Chiang H-L, Huang C, Chiang P (2002) The surface characteristics of activated carbon as affected by ozone and alkaline treatment. Chemosphere 47(3):257–265

    CAS  PubMed  Google Scholar 

  • Choi S-H, Kang H-J, Ryu E-N, Lee K-P (2001) Electrochemical properties of polyolefin nonwoven fabric modified with carboxylic acid group for battery separator. Radiat Phys Chem 60(4–5):495–502

    CAS  Google Scholar 

  • Choi J, Kim J, Lee KT, Lim J, Lee J, Yun YS (2016) Effect of Na2SO4 coating layer on nickel-rich Li (NixCoyMnz)O2 cathode materials for lithium-ion batteries. Adv Mater Interfaces 3(24):1600784

    Google Scholar 

  • Chrétien F, Nikiforidis G, Damas C, Anouti M (2023) Lithium-ion batteries containing surfactants for the protection of graphite anode against the passivation layer byproducts. ChemElectroChem. https://doi.org/10.1002/celc.202300102

    Article  Google Scholar 

  • Christian GD, Dasgupta PK, Schug KA (2013) Analytical chemistry, 7th edn. Wiley

    Google Scholar 

  • Dai J, Li SF, Siow KS, Gao Z (2000) Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries. Electrochim Acta 45(14):2211–2217

    CAS  Google Scholar 

  • Darabi R, Karimi-Maleh H (2023) Hierarchical copper-1, 3, 5 benzenetricarboxylic acid-MOF-derived with nitrogen-doped graphene nanoribbons as a novel assembly nanocomposite for asymmetric supercapacitors. Adv Compos Hybrid Mater 6(3):1–10

    Google Scholar 

  • Dean JR (2019) Practical inductively coupled plasma spectrometry. Wiley

    Google Scholar 

  • Dehghan F, Mohammadi-Manesh H, Loghavi MM (2019) Investigation of lithium-ion diffusion in LiCoPO4 cathode material by molecular dynamics simulation. J Struct Chem 60:727–735

    CAS  Google Scholar 

  • Ding X, Zhou H, Liu G, Yin Z, Jiang Y, Wang X (2015) Electrochemical evaluation of LiAl0.05Ni0.05Mn1.9O4 cathode material synthesized via electrospinning method. J Alloys Compd 632:147–151

    CAS  Google Scholar 

  • Ding M, Liu T, Zhang Y, Cai Z, Yang Y, Yuan Y (2019) Effect of Fe (III) on the positive electrolyte for vanadium redox flow battery. R Soc Open Sci 6(1):181309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ederer J, Janoš P, Ecorchard P, Štengl V, Bělčická Z, Šťastný M et al (2016) Quantitative determination of acidic groups in functionalized graphene by direct titration. React Funct Polym 103:44–53

    CAS  Google Scholar 

  • Feng M, Wang S, Yu Y, Feng Q, Yang J, Zhang B (2017) Carboxyl functionalized carbon fibers with preserved tensile strength and electrochemical performance used as anodes of structural lithium-ion batteries. Appl Surf Sci 392:27–35

    CAS  Google Scholar 

  • Feng L, Liu Y, Zhang D, Wu L, Qin W (2021) Al substituted Mn position on Li [Ni0.5Co0.2Mn0.3]O2 for high rates performance of cathode material. Vacuum 188:110168

    CAS  Google Scholar 

  • Fidel RB, Laird DA, Thompson ML (2013) Evaluation of modified Boehm titration methods for use with biochars. J Environ Qual 42(6):1771–1778

    CAS  PubMed  Google Scholar 

  • Fu C, Wang L, Fang Y (1999) Determination of oxalic acid in urine by co-electroosmotic capillary electrophoresis with amperometric detection. Talanta 50(5):953–958

    CAS  PubMed  Google Scholar 

  • Ganeshan S, Ramasundari P, Elangovan A, Arivazhagan G, Vijayalakshmi R (2017) Synthesis and characterization of MnO2 nanoparticles: study of structural and optical properties. Int J Sci Res Phys Appl Sci 5(6):5–8

    Google Scholar 

  • Geißler D, Nirmalananthan-Budau N, Scholtz L, Tavernaro I, Resch-Genger U (2021) Analyzing the surface of functional nanomaterials—how to quantify the total and derivatizable number of functional groups and ligands. Microchim Acta 188:1–28

    Google Scholar 

  • Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA (2010) Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48(4):1252–1261

    CAS  Google Scholar 

  • Gutierrez A, Manthiram A (2013) Understanding the effects of cationic and anionic substitutions in spinel cathodes of lithium-ion batteries. J Electrochem Soc 160(6):A901

    CAS  Google Scholar 

  • Hanelt S, Orts-Gil G, Friedrich JF, Meyer-Plath A (2011) Differentiation and quantification of surface acidities on MWCNTs by indirect potentiometric titration. Carbon 49(9):2978–2988

    CAS  Google Scholar 

  • Hebert JJ (2020) Quantification of lithium via redox titration and pH titration: a method comparison. Honors College: Oregon State University

    Google Scholar 

  • Ho V-C, Jeong S, Yim T, Mun J (2020) Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries. J Power Sources 450:227625

    CAS  Google Scholar 

  • Hoa NTT, Van Ky N, Son LT, Dung DT, Van Nguyen T, Lam VD et al (2023) Facile synthesis of cobalt-doped sodium lithium manganese oxide with superior rate capability and excellent cycling performance for sodium-ion battery. J Electroanal Chem 929:117129

    Google Scholar 

  • Hoffmann D (2021) Recognition of endpoints (EP). Metrohm, Switzerland

  • Hollander M, Rieman IW (1945) Titration of boric acid in presence of mannitol. Ind Eng Chem Anal Ed 17(9):602–603

    CAS  Google Scholar 

  • Hu L, An Y, Zhang L, Mai L, Ma T, An Q et al (2023) Shape-stabilized phase change material based on MOF-derived oriented carbon nanotubes for thermal management of lithium-ion battery. J Energy Storage 72:108520

    Google Scholar 

  • Ibrahim IM, Wu H, Ezhov R, Kayanja GE, Zakharov SD, Du Y et al (2020) An evolutionarily conserved iron-sulfur cluster underlies redox sensory function of the chloroplast sensor kinase. Commun Biol 3(1):13

    PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Gu H, Zhang J, Cao C, Xie X, Wang K et al (2020) Study on the NiO-like phase in Ni-rich cathode materials for lithium ion batteries. Ionics 26:4961–4967

    CAS  Google Scholar 

  • Jiang S-Q, Gao Q, Li X-G, Deng C-Z, Akanyange SN, Qiu J et al (2023) Sustainable approach to achieve overall leaching of Li and Co in spent lithium-ion batteries without liberation by overall pyrolysis. Sep Purif Technol 324:124601

    CAS  Google Scholar 

  • Karimi-Maleh H, Orooji Y, Karimi F, Karaman C, Vasseghian Y, Dragoi EN et al (2023) Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 6(1):29

    CAS  Google Scholar 

  • Kaushik S, Kumar B (2023) Analytical methods in chemical analysis: an introduction. Walter de Gruyter GmbH & Co KG

  • Kawamura K, Barrie LA, Toom-Sauntry D (2010) Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography. Atmos Environ 44(39):5316–5319

    CAS  Google Scholar 

  • Kejla L, Svoboda P, Sedláček J, Šimáček P (2022) Gravimetric titrations in a modern analytical laboratory: evaluation of performance and practicality in everyday use. Chem Pap 76(4):2051–2058

    CAS  Google Scholar 

  • Kerr DE, Brown PJ, Grey A, Kelleher BP (2021) The influence of organic alkalinity on the carbonate system in coastal waters. Mar Chem 237:104050

    CAS  Google Scholar 

  • Kim J, Hong Y, Ryu KS, Kim MG, Cho J (2005) Washing effect of a LiNi0.83Co0.15Al0.02O2 cathode in water. Electrochem Solid-State Lett 9(1):A19

    Google Scholar 

  • Kim Y, Park H, Shin K, Henkelman G, Warner JH, Manthiram A (2021a) Rational design of coating ions via advantageous surface reconstruction in high-nickel layered oxide cathodes for lithium-ion batteries. Adv Energy Mater 11(38):2101112

    CAS  Google Scholar 

  • Kim Y, Park H, Warner JH, Manthiram A (2021b) Unraveling the intricacies of residual lithium in high-Ni cathodes for lithium-ion batteries. ACS Energy Lett 6(3):941–948

    CAS  Google Scholar 

  • Koga H, Croguennec L, Mannessiez P, Ménétrier M, Weill F, Bourgeois L et al (2012) Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: insights into their structure. J Phys Chem C 116(25):13497–13506

    CAS  Google Scholar 

  • Kounbach S, Embarek MB, Mahi L, Boulif R, Beniazza R, Benhida R (2022) Simultaneous determination of H2SiF6, HF and total fluoride in fluorosilicic acid recovered from wet phosphoric acid production by potentiometric titration. Microchem J 175:107152

    CAS  Google Scholar 

  • Krejcova A, Cernohorsky T (2003) The determination of boron in tea and coffee by ICP–AES method. Food Chem 82(2):303–308

    CAS  Google Scholar 

  • Lachenmeier DW, Richling E, López MG, Frank W, Schreier P (2005) Multivariate analysis of FTIR and ion chromatographic data for the quality control of tequila. J Agric Food Chem 53(6):2151–2157

    CAS  PubMed  Google Scholar 

  • Lee S-H, Lee S, Jin B-S, Kim H-S (2019) Optimized electrochemical performance of Ni rich LiNi0.91Co0.06Mn0.03O2 cathodes for high-energy lithium ion batteries. Sci Rep 9(1):8901

    PubMed  PubMed Central  Google Scholar 

  • Li J, Zheng J, Yang Y (2007) Studies on storage characteristics of LiNi0.4Co0.2Mn0.4O2 as cathode materials in lithium-ion batteries. J Electrochem Soc 154(5):A427

    CAS  Google Scholar 

  • Li S, Zhao Y, Shi X, Li B, Xu X, Zhao W et al (2012) Effect of sulfolane on the performance of lithium bis (oxalato) borate-based electrolytes for advanced lithium ion batteries. Electrochim Acta 65:221–227

    CAS  Google Scholar 

  • Li W, Lee S, Manthiram A (2020) High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv Mater 32(33):2002718

    CAS  Google Scholar 

  • Li X, Gao S, Zhang N, Zhang M, Wang R, Chang J (2021) Identification of tectoridin as the inhibitor of FTO by isothermal titration calorimetric and spectroscopic methods. New J Chem 45(20):8993–9001

    CAS  Google Scholar 

  • Lin C-E, Zhang H, Song Y-Z, Zhang Y, Yuan J-J, Zhu B-K (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem a 6(3):991–998

    CAS  Google Scholar 

  • Liu S, Chen X, Chen X, Liu Z, Wang H (2007) Activated carbon with excellent chromium (VI) adsorption performance prepared by acid–base surface modification. J Hazard Mater 141(1):315–319

    CAS  PubMed  Google Scholar 

  • Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd 674:447–454

    CAS  Google Scholar 

  • Liu N, Senthil RA, Man Y, Pan J, Jin X, Sun Y et al (2018) Determination of nickel, cobalt and manganese in cathode material of lithium ion batteries. Int J Electrochem Sci 13:1156811579

    Google Scholar 

  • Liu J, Zhang Y, Bai J, Zhou L, Wang Z (2023) Influence of lithium plating on lithium-ion battery aging at high temperature. Electrochim Acta 454:142362

    CAS  Google Scholar 

  • Loghavi MM, Mohammadi-Manesh H, Eqra R, Ghasemi A, Babaiee M (2018) DFT study of adsorption of lithium on Si, Ge-doped divacancy defected graphene as anode material of Li-ion battery. Phys Chem Res 6(4):871–878

    Google Scholar 

  • Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) Y2O3-decorated LiNi0.8Co0.15Al0.05O2 cathode material with improved electrochemical performance for lithium-ion batteries. J Electroanal Chem 848:113326

    CAS  Google Scholar 

  • Loghavi MM, Mohammadi-Manesh H, Eqra R (2019) LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries. J Solid State Electrochem 23:2569–2578

    CAS  Google Scholar 

  • Loghavi MM, Askari M, Babaiee M, Ghasemi A (2019) Improvement of the cyclability of Li-ion battery cathode using a chemical-modified current collector. J Electroanal Chem 841:107–110

    CAS  Google Scholar 

  • Loghavi MM, Eqra R, Mohammadi-Manesh H (2020) Preparation and characteristics of graphene/Y2O3/LiNi0.8Co0.15Al0.05O2 composite for the cathode of lithium-ion battery. J Electroanal Chem 862:113971

    CAS  Google Scholar 

  • Loghavi MM, Nahvibayani A, Moghim MH, Babaiee M, Baktashian S, Eqra R (2022) Electrochemical evaluation of LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2, and LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium-ion batteries: from half-coin cell to pouch cell. Monatsh Chem 153(12):1197–1212

    CAS  Google Scholar 

  • Loghavi MM, Babaiee M, Eqra R (2022) Al2O3-coated LiNi0.8Co0.15Al0.05O2/graphene composite as a high-performance cathode material for lithium-ion battery. Main Group Chem. https://doi.org/10.3233/MGC-220025

    Article  Google Scholar 

  • Mabbott GA (2020) Electroanalytical chemistry: principles, best practices, and case studies. Wiley

    Google Scholar 

  • Mathias J (2019) The advantages and disadvantages of X-ray photoelectron spectroscopy (XPS/ESCA)

  • Maynard C, Mullenix G, Maynard C, Wells-Crafton S, Lee J, Rao S et al (2022) Titration of dietary isoleucine and evaluation of branched-chain amino acid levels in female Cobb 500 broilers during a 22-to 42-day finisher period. J Appl Poult Res 31(2):100245

    CAS  Google Scholar 

  • Mesnier A, Manthiram A (2020) Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces 12(47):52826–52835

    CAS  PubMed  Google Scholar 

  • Microchemical JournalSavignac L, Dawkins JI, Schougaard SB, Mauzeroll J (2021) Determining the effect of dissolved CO2 on solution phase Li+ diffusion in common Li-ion battery electrolytes. Electrochem Commun 125:106979

    Google Scholar 

  • Nowak S, Winter M (2017) Elemental analysis of lithium ion batteries. J Anal at Spectrom 32(10):1833–1847

    CAS  Google Scholar 

  • Park K, Choi B (2018) Requirement of high lithium content in Ni-rich layered oxide material for Li ion batteries. J Alloys Compd 766:470–476

    CAS  Google Scholar 

  • Park K, Park J-H, Hong S-G, Choi B, Seo S-W, Park J-H et al (2016) Enhancement in the electrochemical performance of zirconium/phosphate bi-functional coatings on LiNi0.8Co0.15Mn0.05O2 by the removal of Li residuals. Phys Chem Chem Phys 18(42):29076–29085

    CAS  PubMed  Google Scholar 

  • Park JH, Choi B, Kang YS, Park SY, Yun DJ, Park I et al (2018) Effect of residual lithium rearrangement on Ni-rich layered oxide cathodes for lithium-ion batteries. Energy Technol 6(7):1361–1369

    CAS  Google Scholar 

  • Pražanová A, Kočí J, Míka MH, Pilnaj D, Plachý Z, Knap V (2023) Pre-recycling material analysis of NMC lithium-ion battery cells from electric vehicles. Crystals 13(2):214

    Google Scholar 

  • Pyschik M, Klein-Hitpaß M, Girod S, Winter M, Nowak S (2017) Capillary electrophoresis with contactless conductivity detection for the quantification of fluoride in lithium ion battery electrolytes and in ionic liquids: a comparison to the results gained with a fluoride ion-selective electrode. Electrophoresis 38(3–4):533–539

    CAS  PubMed  Google Scholar 

  • Qiu D, Zhang X, Zheng D, Ji W, Ding T, Qu H et al (2023) High-performance Li-S batteries with a minimum shuttle effect: disproportionation of dissolved polysulfide to elemental sulfur catalyzed by a bifunctional carbon host. ACS Appl Mater Interfaces 15(30):36250–36261

    CAS  PubMed  Google Scholar 

  • Rahmani M, Moghim MH, Zebarjad SM, Eqra R (2023) Surface modification of a polypropylene separator by an electrospun coating layer of Poly (vinyl alchohol)-SiO2 for lithium-ion batteries. J Polym Res 30(3):1–17

    Google Scholar 

  • Raviolo S, Bracamonte MV, Calderón CA, Cometto FP, Luque GL (2023) A green solution to energy storage: Brewers’ spent grains biocarbon-silica composites as high-performance lithium-ion batteries anodes. Energy Technol. https://doi.org/10.1002/ente.20230034

    Article  Google Scholar 

  • Rochat S, Severin K (2011) A simple fluorescence assay for the detection of fluoride in water at neutral pH. ChemComm 47(15):4391–4393

    CAS  Google Scholar 

  • Seong WM, Cho KH, Park JW, Park H, Eum D, Lee MH et al (2020a) Controlling residual lithium in high-nickel (>90%) lithium layered oxides for cathodes in lithium-ion batteries. Angew Chem 59(42):18662–18669

    CAS  Google Scholar 

  • Seong WM, Kim Y, Manthiram A (2020b) Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries. Chem Mater 32(22):9479–9489

    CAS  Google Scholar 

  • Shard AG (2020) Practical guides for x-ray photoelectron spectroscopy: quantitative XPS. J Vacuum Sci Technol A. https://doi.org/10.1116/1.5141395

    Article  Google Scholar 

  • Sharp JD, Byrne RH (2020) Interpreting measurements of total alkalinity in marine and estuarine waters in the presence of proton-binding organic matter. Deep Sea Res, Part I 165:103338

    CAS  Google Scholar 

  • Shi F, Liu Q, He H, Xing B, Huang G, Jia J et al (2023) Chemical blowing strategy synthesis of nitrogen-doped hierarchical porous carbon from coal tar pitch for high-performance lithium-ion batteries. Chem Pap 77(4):2051–2061

    CAS  Google Scholar 

  • Singh R, Mishra NK, Singh N, Rawal P, Gupta P, Joshi KB (2020) Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile. New J Chem 44(22):9255–9263

    CAS  Google Scholar 

  • Skoog DA, West DM, Holler FJ, Crouch SR (2013) Fundamentals of analytical chemistry. Cengage learning

  • Stroukoff KR, Manthiram A (2011) Thermal stability of spinel Li1.1Mn1.9yMyO4–zFz (M= Ni, Al, and Li, 0≤ y≤0.3, and 0≤ z ≤ 0.2) cathodes for lithium ion batteries. J Mater Chem 21(27):10165–10170

    CAS  Google Scholar 

  • Sun Y, Shiosaki Y, Xia Y, Noguchi H (2006) The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries. J Power Sources 159(2):1353–1359

    CAS  Google Scholar 

  • Tomer N, Goel A, Ghule VD, Malhotra R (2021) A chromone based Schiff base: an efficient colorimetric sensor for specific detection of Cu (II) ion in real water samples. J Mol Struct 1227:129549

    CAS  Google Scholar 

  • Tran N, Croguennec L, Labrugère C, Jordy C, Biensan P, Delmas C (2005) Layered Li1+x(Ni0.425Mn0.425Co0.15)1xO2 positive electrode materials for lithium-ion batteries. J Electrochem Soc 153(2):A261

    Google Scholar 

  • Tsechansky L, Graber E (2014) Methodological limitations to determining acidic groups at biochar surfaces via the Boehm titration. Carbon 66:730–733

    CAS  Google Scholar 

  • Wang X, Fang Z, Hu X, Fu B, Feng T, Li T et al (2023) Nanoscale control and tri-element co-doping of 4.6 V LiCoO2 with excellent rate capability and long-cycling stability for lithium-ion batteries. Dalton Trans 52(13):3981–3989

    CAS  PubMed  Google Scholar 

  • Ward JA, Perez-Lopez C, Mayor-Ruiz C (2023) Biophysical and computational approaches to study ternary complexes: a ‘cooperative relationship’to rationalize targeted protein degradation. ChemBioChem 24(10):e202300163

    CAS  PubMed  Google Scholar 

  • Wu H, Lu W, Chen Y, Zhang P, Cheng X (2020) Application of Boehm titration for the quantitative measurement of soot oxygen functional groups. Energy Fuels 34(6):7363–7372

    CAS  Google Scholar 

  • Xiong X, Wang Z, Yue P, Guo H, Wu F, Wang J et al (2013) Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J Power Sources 222:318–325

    CAS  Google Scholar 

  • Xiong X, Wang Z, Yan G, Guo H, Li X (2014) Role of V2O5 coating on LiNiO2-based materials for lithium ion battery. J Power Sources 245:183–193

    CAS  Google Scholar 

  • Yamazaki S, Tatara R, Mizuta H, Kawano K, Yasuno S, Komaba S (2023) Consumption of fluoroethylene carbonate electrolyte-additive at the Si–graphite negative electrode in Li and Li-ion cells. J Phys Chem C 127(29):14030–14040

    CAS  Google Scholar 

  • Yang X, Zhen H, Liu H, Chen C, Zhong Y, Yang X et al (2023a) Environmental-friendly and effectively regenerate anode material of spent lithium-ion batteries into high-performance P-doped graphite. Waste Manage 161:52–60

    CAS  Google Scholar 

  • Yang Z, Tanim TR, Liu H, Bloom I, Dufek EJ, Key B et al (2023b) Quantitative analysis of origin of lithium inventory loss and interface evolution over extended fast charge aging in Li ion batteries. ACS Appl Mater Interfaces 15(31):37410–37421

    CAS  PubMed  Google Scholar 

  • Yappert MC, DuPre DB (1997) Complexometric titrations: competition of complexing agents in the determination of water hardness with EDTA. J Chem Educ 74(12):1422

    CAS  Google Scholar 

  • Yiğitalp A, Taşdemir A, Alkan Gürsel S, Yürüm A (2020) Nafion-coated LiNi0.80Co0.15Al0.05O2 (NCA) cathode preparation and its influence on the Li-ion battery cycle performance. Energy Storage 2(5):e154

    Google Scholar 

  • Yiping H, Caiyun W (2010) Ion chromatography for rapid and sensitive determination of fluoride in milk after headspace single-drop microextraction with in situ generation of volatile hydrogen fluoride. Anal Chim Acta 661(2):161–166

    PubMed  Google Scholar 

  • You H, Jiang B, Zhu J, Wang X, Shi G, Han G et al (2023) In-situ quantitative detection of irreversible lithium plating within full-lifespan of lithium-ion batteries. J Power Sources 564:232892

    CAS  Google Scholar 

  • Yusenko E, Polyntseva E, Lyzhova A, Kalyakina O (2013) Determination of oxalate and some inorganic anions in green and black tea. In: Proceedings of the Latvian academy of sciences, De Gruyter Poland, p 429

  • Zachmann N, Petranikova M, Ebin B (2023) Electrolyte recovery from spent Lithium-Ion batteries using a low temperature thermal treatment process. J Ind Eng Chem 118:351–361

    CAS  Google Scholar 

  • Zhang N, Stark J, Li H, Liu A, Li Y, Hamam I et al (2020) Effects of fluorine doping on nickel-rich positive electrode materials for lithium-ion batteries. J Electrochem Soc 167(8):080518

    CAS  Google Scholar 

  • Zhou F, Liu M, Li X, Zhu D, Ma Y, Qu X et al (2023) Preparation of CoO-C catalysts from spent lithium-ion batteries and waste biomass for efficient degradation of ciprofloxacin via peroxymonosulfate activation. Chem Eng J 471:144469

    CAS  Google Scholar 

  • Zhu H, Yin J, Zhao X, Wang C, Yang X (2015) Humic acid as promising organic anodes for lithium/sodium ion batteries. ChemComm 51(79):14708–14711

    CAS  Google Scholar 

  • Zhu Y, Liang X, Zhao H, Yin H, Liu M, Liu F et al (2017) Rapid determination of the Mn average oxidation state of Mn oxides with a novel two-step colorimetric method. Anal Methods 9(1):103–109

    CAS  Google Scholar 

  • Ziraki S, Kanani M, Hashemi B, Loghavi MM (2023) Effect of sodium and yttrium co-doping on electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries: computational and experimental investigation. J Energy Storage 70:107983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohsen Loghavi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loghavi, M.M., Babaiee, M. & Eqra, R. A review of volumetric titration as an efficient method for the quantification of ions and compounds in lithium-ion battery components. Chem. Pap. 77, 7395–7408 (2023). https://doi.org/10.1007/s11696-023-03075-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-03075-w

Keywords

Navigation