Skip to main content
Log in

Deciphering the interaction of galactomannan polysaccharide guar gum and bile salt sodium deoxycholate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The interaction study of water-soluble galactomannan polysaccharide guar gum (GG) and biosurfactant bile salt may have implications in lipid digestion and food formulations. In this work, we have tried to bring almost all fundamental aspects of the interaction of guar gum and bile salt sodium deoxycholate (NaDC), and the physicochemical properties allied with their association. The critical aggregation concentration (CAC), aggregation number (Nagg), and critical micellar concentration (CMC) of GG/NaDC mixed system were calculated using fluorescence parameters of pyrene molecule and conventional conductivity data. The thermodynamic parameters of GG/NaDC system were calculated, and the association was found to be a spontaneous and feasible process. At various regions of their interaction, zeta potential and dynamic light scattering studies have been done to gain a better understanding of their interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-El-Aziz AS, Abdelghani AA, Wagner BD, Abdelrehim EM (2016) Aggregation enhanced excimer emission (AEEE) with efficient blue emission based on pyrene dendrimers. Polym Chem 7(19):3277–3299

    CAS  Google Scholar 

  • Aguiar J, Carpena P, Molina-Bolıvar JA, Ruiz CC (2003) On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method. J Colloid Interface Sci 258(1):116–122

    CAS  Google Scholar 

  • Aubry T, Moan M, Argillier JF, Audibert A (1998) Influence of a nonionic surfactant on the dilute hydrodynamical properties of a hydrophobically associating water-soluble polymer. Macromolecules 31(25):9072–9074

    CAS  Google Scholar 

  • Behera SK, Mishra S, Mohapatra M (2021) Physicochemical study of dietary fiber methylcellulose and human intestinal bile salt micellar aggregates. Colloid Interface Sci Commun 44:100493

    CAS  Google Scholar 

  • Binana-Limbele W, Zana R (1990) Fluorescence probing of microdomains in aqueous solutions of polysoaps. 2. Study of the size of the microdomains. Macromolecules 23(10):2731–2739

    CAS  Google Scholar 

  • Butt MS, Shahzadi N, Sharif MK, Nasir M (2007) Guar gum: a miracle therapy for hypercholesterolemia, hyperglycemia and obesity. Crit Rev Food Sci Nutr 47(4):389–396

    CAS  PubMed  Google Scholar 

  • Chandar P, Somasundaran P, Turro NJ (1988) Fluorescence probe investigation of anionic polymer-cationic surfactant interactions. Macromolecules 21(4):950–953

    CAS  Google Scholar 

  • Chauhan S, Kumari S, Kumar K, Umar A, Sundaresan CN, Gupta R (2015) Influence of iso-perthiocyanic acid and temperature on the aggregation properties of sodium dodecylsulphate in dimethylsulphoxide. J Mol Liq 211:338–345

    CAS  Google Scholar 

  • Chudzikowski RJ (1971) Guar gum and its applications. J Soc Cosmet Chem 22(1):43

    CAS  Google Scholar 

  • de Buy M, Wenniger L, Pusl T, Beuers U (2013) Bile salts, encyclopedia of biological chemistry, 2nd edn. Academic Press, London, pp 167–171

    Google Scholar 

  • de Martins RM, Becker CM, Samios D, Bica CI (2006a) Interaction of (hydroxypropylmethyl) cellulose with anionic surfactants. Macromol Symp 245(1):287–296

    Google Scholar 

  • de Martins RM, Da Silva CA, Becker CM, Samios D, Christoff M, Bica CI (2006b) Interaction of (hydroxypropyl) cellulose with anionic surfactants in dilute regime. Colloid Polym Sci 284(12):1353–1361

    CAS  Google Scholar 

  • de Seixas-Junior CH, de Carvalho MM, Jacumazo J, Piazza RD, Parchen GP, de Freitas RA (2020) Interaction of guar gum galactomannans with the anionic surfactant sodium lauryl ether sulphate. Int J Biol Macromol 165:713–721

    PubMed  Google Scholar 

  • Eastwood MA, Hamilton D (1968) Studies on the adsorption of bile salts to non-absorbed components of diet. Biochim Et Biophys Acta (BBA)—Lipids Lipid Metab 152(1):165–173

    CAS  Google Scholar 

  • El Aferni A, Guettari M, Tajouri T (2021) Mathematical model of Boltzmann’s sigmoidal equation applicable to the spreading of the coronavirus (Covid-19) waves. Environ Sci Pollut Res 28(30):40400–40408

    Google Scholar 

  • Fijan B, Sostar-Turk S, Lapasin R (2007) Rheological study of interactions between non-ionic surfactantsand polysaccharide thickeners used in textile printing. Carbohyd Polym 68(4):708–717

    CAS  Google Scholar 

  • Gunness P, Gidley MJ (2010) Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 1(2):149–155

    CAS  PubMed  Google Scholar 

  • Guo Y, Dong X, Ruan W, Shang Y, Liu H (2017) A thermo-sensitive OEGMA-based polymer: synthesis, characterization and interactions with surfactants in aqueous solutions with and without salt. Colloid Polym Sci 295(2):327–340

    CAS  Google Scholar 

  • Gupta S, & Variyar PS (2018) Guar gum: a versatile polymer for the food industry. In: Biopolymers for food design (pp 383–407). Academic Press

  • Ingratta M, Duhamel J (2007) Correlating pyrene excimer formation with polymer chain dynamics in solution Possibilities and Limitations. Macromolecules 40(18):6647–6657

    CAS  Google Scholar 

  • Kalyanasundaram K, Thomas JK (1977) Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J Am Chem Soc 99(7):2039–2044

    CAS  Google Scholar 

  • Kancharla S, Zoyhofski NA, Bufalini L, Chatelais BF, Alexandridis P (2020) Association between nonionic amphiphilic polymer and ionic surfactant in aqueous solutions: effect of polymer hydrophobicity and micellization. Polymers 12(8):1831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kästner U, Zana R (1999) Interactions between quaternary ammonium surfactant oligomers and water-soluble modified guars. J Colloid Interface Sci 218(2):468–479

    PubMed  Google Scholar 

  • Khatua D, Gupta A, Dey J (2006) Characterization of micelle formation of dodecyldimethyl-N-2-phenoxyethylammonium bromide in aqueous solution. J Colloid Interface Sci 298(1):451–456

    CAS  PubMed  Google Scholar 

  • Kohlmann T, Goez M (2020) Pyrene–viologen complexes in SDS micelles: quenching parameters and use as probes of aggregation numbers. Photochem Photobiol Sci 19(1):71–79

    CAS  PubMed  Google Scholar 

  • Kumar K, Patial BS, Chauhan S (2015) Conductivity and fluorescence studies on the micellization properties of sodium cholate and sodium deoxycholate in aqueous medium at different temperatures: effect of selected amino acids. J Chem Thermodyn 82:25–33

    CAS  Google Scholar 

  • Leclere CJ, Champ M, Boillot J, Guille G, Lecannu G, Molis C et al (1994) Role of viscous guar gums in lowering the glycemic response after a solid meal. Am J Clin Nutr 59(4):914–921

    CAS  PubMed  Google Scholar 

  • Lia A, Hallmans G, Sandberg AS, Sundberg B, Aman P, Andersson H (1995) Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr 62(6):1245–1251

    CAS  PubMed  Google Scholar 

  • Maisonnier S, Gomez J, Brée A, Berri C, Baéza E, Carré B (2003) Effects of microflora status, dietary bile salts and guar gum on lipid digestibility, intestinal bile salts, and histomorphology in broiler chickens. Poult Sci 82(5):805–814

    CAS  PubMed  Google Scholar 

  • Mondal S, Ghosh S (2012) Role of curcumin on the determination of the critical micellar concentration by absorbance, fluorescence and fluorescence anisotropy techniques. J Photochem Photobiol, B 115:9–15

    CAS  PubMed  Google Scholar 

  • Moriceau S, Besson C, Levrat MA, Moundras C, Rémésy C, Morand C, Demigné C (2000) Cholesterol-lowering effects of guar gum: changes in bile acid pools and intestinal reabsorption. Lipids 35(4):437–444

    CAS  PubMed  Google Scholar 

  • Moundras C, Behr SR, Remesy C, Demigne C (1997) Fecal losses of sterols and bile acids induced by feeding rats guar gum are due to greater pool size and liver bile acid secretion. J Nutr 127(6):1068–1076

    CAS  PubMed  Google Scholar 

  • Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications—a review. J Food Sci Technol 51(3):409–418

    CAS  PubMed  Google Scholar 

  • Mukherjee I, Sarkar D, Moulik SP (2010) Interaction of gums (guar, carboxymethylhydroxypropyl guar, diutan, and xanthan) with surfactants (DTAB, CTAB, and TX-100) in aqueous medium. Langmuir 26(23):17906–17912

    CAS  PubMed  Google Scholar 

  • Naskar B, Dey A, Moulik SP (2013) Counter-ion effect on micellization of ionic surfactants: a comprehensive understanding with two representatives, sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB). J Surfactants Deterg 16(5):785–794

    CAS  Google Scholar 

  • Naumann S, Schweiggert-Weisz U, Eglmeier J, Haller D, Eisner P (2019) In vitro interactions of dietary fibre enriched food ingredients with primary and secondary bile acids. Nutrients 11(6):1424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panmai S, Prud’homme RK, Peiffer DG, Jockusch S, Turro NJ (2002) Interactions between hydrophobically modified polymers and surfactants: a fluorescence study. Langmuir 18(10):3860–3864

    CAS  Google Scholar 

  • Pasquier B, Armand M, Guillon F, Castelain C, Borel P, Barry JL et al (1996) Viscous soluble dietary fibers alter emulsification and lipolysis of triacylglycerols in duodenal medium in vitro. J Nutr Biochem 7(5):293–302

    CAS  Google Scholar 

  • Prabaharan M (2011) Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol 49(2):117–124

    CAS  PubMed  Google Scholar 

  • Ray GB, Chakraborty I, Moulik SP (2006) Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci 294(1):248–254

    Google Scholar 

  • Ridlon JM, Kang DJ, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47(2):241–259

    CAS  PubMed  Google Scholar 

  • Ruso JM, Taboada P, Mosquera V, Sarmiento F (1999) Thermodynamics of micellization of n-alkyl sulfates in an alkaline medium at different temperatures. J Colloid Interface Sci 214(2):292–296

    CAS  PubMed  Google Scholar 

  • Saeed S, Mosa-Al-Reza H, Fatemeh AN, Saeideh D (2012) Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats. Pharmacogn Mag 8(29):65

    CAS  PubMed Central  Google Scholar 

  • Silva I, Machado F, Moreno MJ, Nunes C, Coimbra MA, Coreta-Gomes F (2021) Polysaccharide structures and their hypocholesterolemic potential. Molecules 26(15):4559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Li Y, Liang S, Wang J (2013) Micelle behaviors of sophorolipid/rhamnolipid binary mixed biosurfactant systems. Colloids Surf, A 436:201–206

    CAS  Google Scholar 

  • Sovilj VJ, Petrović LB (2005) Influence of molecular characteristics of nonionic cellulose ethers on their interaction with ionic surfactant investigated by conductometry. Colloid Polym Sci 284(3):334–339

    CAS  Google Scholar 

  • Srichamroen A (2013) Influence of temperature and salt on viscosity property of guar gum. Naresuan Univ J: Sci Technol 15(2):55–62

    Google Scholar 

  • Thombare N, Jha U, Mishra S, Siddiqui MZ (2016) Guar gum as a promising starting material for diverse applications—a review. Int J Biol Macromol 88:361–372

    CAS  PubMed  Google Scholar 

  • Torcello-Gómez A, Foster TJ (2014) Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems. Carbohyd Polym 113:53–61

    Google Scholar 

  • Torcello-Gómez A, Fraguas CF, Ridout MJ, Woodward NC, Wilde PJ, Foster TJ (2015) Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts. Food Funct 6(3):730–739

    PubMed  Google Scholar 

  • Turro NJ, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100(18):5951–5952

    CAS  Google Scholar 

  • Vahouny GV, Tombes R, Cassidy MM, Kritchevsky D, Gallo LL (1980) Dietary fibers: V. Binding of bile salts, phospholipids and cholesterol from mixed micelles by bile acid sequestrants and dietary fibers. Lipids 15(12):1012–1018

    CAS  PubMed  Google Scholar 

  • Villetti MA, Bica CI, Garcia IT, Pereira FV, Ziembowicz FI, Kloster CL, Giacomelli C (2011) Physicochemical properties of methylcellulose and dodecyltrimethylammonium bromide in aqueous medium. J Phys Chem B 115(19):5868–5876

    CAS  PubMed  Google Scholar 

  • Winnik FM, Winnik MA, Tazuke S (1987) Interaction of hydroxypropylcellulose with aqueous surfactants: fluorescence probe studies and a look at pyrene-labeled polymer. J Phys Chem 91(3):594–597

    CAS  Google Scholar 

  • Zhang Z, Zheng P, Cai D, An X, Shen W (2014) Interaction of ionic surfactants with a hydrophobic modified thermosensitive polymer. J Dispers Sci Technol 35(5):695–705

    Google Scholar 

Download references

Acknowledgements

Dr. M. Mohapatra acknowledges the OURIIP Seed Fund (Grant Index number: 21SF/CH/09 Chemistry), Odisha State Higher Education Council, Government of Odisha, India, for financial assistance.

Funding

OURIIP Seed Fund, Odisha State Higher Education Council, Government of Odisha, India, 21SF/CH/09 Chemistry, MONALISA MOHAPATRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mohapatra.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 355 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S.K., Mishra, S. & Mohapatra, M. Deciphering the interaction of galactomannan polysaccharide guar gum and bile salt sodium deoxycholate. Chem. Pap. 77, 6147–6157 (2023). https://doi.org/10.1007/s11696-023-02928-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02928-8

Keywords

Navigation