Skip to main content
Log in

Structural and spectroscopic characterization, electronic properties, and biological activity of the 4-(3-methoxyphenyl)piperazin-1-ium 4-(3-methoxyphenyl)piperazine-1-carboxylate monohydrate

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, 4-(3-methoxyphenyl)piperazin-1-ium 4-(3-methoxyphenyl)piperazine-1-carboxylate monohydrate was synthesized and characterized by using spectroscopic (XRD, FT-IR, FT-Ra, and NMR) techniques. Theoretical calculations were performed in the DFT method using the B3LYP functional and the 6–311 +  + G(d,p) basis set and compared with the experimental results. It was determined that the geometric parameters and spectroscopic data obtained from the DFT calculations were in high agreement with the experimental results. The HOMO–LUMO energy gap was calculated at 5.19 eV, while this value was experimentally found at 4.26 eV from the UV–Vis absorption spectrum. Although the experimental and theoretical values are different from each other, according to both results, this synthesized structure has low reactivity and a tendency to be stable. Also, the electronic (MEP, Fukuki functions, and charge analyses), nonlinear optical, and thermodynamic properties (heat capacity, entropy, enthalpy change, and Gibbs free energy) of the title complex were investigated. Electrophilic and nucleophilic regions were found to be the same in all of the electronic investigation analyses. The first hyperpolarizability value was calculated to be 25 times (9.27 × 10–30 esu) greater than that of the urea used for comparison. Therefore, it has very good nonlinear optical properties. The change in the values of calculated thermodynamic properties depending on the temperature change shows that the thermodynamic system of the structure changed. Finally, antimicrobial activity studies were carried out to evaluate the biological activity of this synthesized complex, the experimental results were supported by molecular docking studies, and the toxicological and physicochemical properties of the complex were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbaz T, Bendjeddou A, Villemin D (2019) Structural and quantum chemical studies on aryl sulfonyl piperazine derivatives. J Drug Deliv Ther 9(1s):88–97

    Article  CAS  Google Scholar 

  • Al-Ghorbani M, Bushra BA, Zabiulla S, Mamatha SV, Khanum SA (2015) Piperazine and morpholine: synthetic preview and pharmaceutical applications. J Chem Pharm Res 7(5):281. https://doi.org/10.5958/0974-360X.2015.00100.6

    Article  CAS  Google Scholar 

  • Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J Chem Soc Perkin Trans 2(12):1−19.

  • Altürk S, Tamer Ö, Avcı D, Atalay Y (2015) Synthesis, spectroscopic characterization, second and third-order nonlinear optical properties, and DFT calculations of a novel Mn(II) complex. J Organomet Chem 797:110–119. https://doi.org/10.1016/j.jorganchem.2015.08.014

    Article  CAS  Google Scholar 

  • Amarasinghe PM, Katti KS, Katti DR (2009) Nature of organic fluid–montmorillonite interactions: an FTIR spectroscopic study. J Colloid Interface Sci 337:97–105. https://doi.org/10.1016/j.jcis.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  • Amul B, Muthu S, Raja M, Sevvanthi S (2019) Spectral, DFT and molecular docking investigations on Etodolac. J Mol Struc 1195:747–761

    Article  CAS  Google Scholar 

  • Arbo MD, Bastos ML, Carmo HF (2012) Piperazine compounds as drugs of abuse. Drug Alcohol Depen 122:174–185. https://doi.org/10.1016/j.drugalcdep.2011.10.007

    Article  CAS  Google Scholar 

  • Arulraj R, Sivakumar S, Rajkumar K, Jasinski JP, Kaur M, Thiruvalluvar A (2020) Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 3-Chloro-3-methyl-r(2), c(6)-bis(p-methoxyphenyl) piperidin-4-one. J Chem Crystallogr 50:41–51

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98: 5648.

  • Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed 34(15):1555–1573

    Article  CAS  Google Scholar 

  • Biovia (2021) Visualization. https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/visualization/. Accessed 01 October 2021.

  • Brito MAD (2011) Pharmacokinetic study with computational tools in the medicinal chemistry course. Braz J Pharm Sci 47(4):797–805

    Article  Google Scholar 

  • Büyükmurat Y, Akyüz S (2001) Theoretical and experimental IR spectra and assignments of 3-aminopyridine. J Mol Struct 563:545–550. https://doi.org/10.1016/S0022-2860(00)00801-2

    Article  Google Scholar 

  • Chen ZJ, Chen YN, Xu CN, Zhao SS, Cao QY, Qian SS, Jie Q, Zhu HL (2006) Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid. J Mol Struct 1117:293–299. https://doi.org/10.1016/j.molstruc.2016.03.084

    Article  CAS  Google Scholar 

  • Colmenarez JB, Reinaldo A, Quintero M, Seijas L, Almeida R, Rincón L (2017) Crystal structure analysis and topological study of non-covalent interactions in 2,2-Biimidazole: salicylic acid 2:1 co-crystal. J Chem Crystallogr 47:47–58

    Article  Google Scholar 

  • Cremer D, Pople JA (1975) General definition of ring puckering coordinates. J Am Chem Soc 97(6):1354–1358

    Article  CAS  Google Scholar 

  • Cuadradoa EP, Ferrer K, Osorioc E, Brito I, Cisterna J, Gutiérrez M (2021) Crystal structure, Hirshfeld surface analysis and DFT studies of N-(4-acetylphenyl)quinoline-3-carboxamide. J Mol Struct 1246:131162

    Article  Google Scholar 

  • Çelik S, Alp M, Yurdakul S (2020) A combined experimental and theoretical study on vibrational spectra of 3-pyridyl methyl ketone. Spectrosc Lett 53(4):234–248. https://doi.org/10.1080/00387010.2020.1734840

    Article  CAS  Google Scholar 

  • DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newslett Prot Crystallogr 40:82–92.

  • Dennington RD, Keith TA, Millam JM (2008) GaussView 5. Gaussian Inc.

  • Di L, Kerns EH (2015) Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effects for peripheral drugs. Wiley, New York

    Book  Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) A complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  • Erdogdu Y, Manimaran D, Güllüoglu MT, Amalanathan M, Joeb IH, Yurdakul S (2013) FT-IR, FT-Raman, NMR Spectra and DFT Simulations of 4-(4-Fluoro-phenyl)-1H-imidazole. Opt Spect 114(4):525–536

    Article  CAS  Google Scholar 

  • Erdoğdu Y, Unsalan O, Sajan D, Gulluoglu M (2010) Structural conformations and vibrational spectral study of chloroflavone with density functional theoretical simulations. Spectrochim Acta A 76:130–136

    Article  Google Scholar 

  • Foroumadi A, Emami S, Mansouri S, Javidnia A, Saeid-Adeli N, Shirazi FH, Shafiee A (2007) Synthesis and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine ring. Eur J Med Chem 42(7):985–992

    Article  CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks G, Schlegel UH, Scuseria G, Robb M, Cheeseman J, Barone V, Mennucci B, Petersson G et al (2009) Gaussian 09. Revision C.01; Gaussian, Inc.: Wallingford, CT.

  • Gan LL, Fang B, Zhou CH (2010) Synthesis of azole-containing piperazine derivatives and evaluation of their antibacterial, antifungal and cytotoxic activities. B Kor Chem Soc 31(12):3684–3692. https://doi.org/10.5012/BKCS.2010.31.12.3684

    Article  CAS  Google Scholar 

  • Gomathi MA, Karnan C, Sivanesan T, Rhoda JC, MAnivannan s, Ragavendran V, Vinitha G, Prabakaran AR (2021) An organic benzimidazolium benzilate (BDBA) crystal: Structural description, spectral investigations, DFT calculations, thermal, photoluminescence, linear and nonlinear optical analysis. Chem Phys Lett 776:138705. https://doi.org/10.1016/j.cplett.2021.138705

  • Govindarajan M, Ganasan K, Periandy S, Karabacak M, Mohan S (2010) Vibrational spectroscopic analysis of 2-chlorotoluene and 2-bromotoluene: a combined experimental and theoretical study. Spectrochim Acta A Mol Biomol Spect 77(5):1005–1013

    Article  CAS  Google Scholar 

  • Gunasekaran S, Anita B (2008) Spectral investigation and normal coordinate analysis of piperazine. Indian J Pure Ap Phy 46:833–838

    CAS  Google Scholar 

  • Haruna K, Kumar VS, Maray YS, Popoola SA, Thomas R, Roxy MS, Al-Saadi AA (2019) Conformational profile, vibrational assignments, NLO properties and molecular docking of biologically active herbicide1,1-dimethyl-3-phenylurea. Heliyon 5:01987

    Article  Google Scholar 

  • Karamanis P, Pouchan C, Maroulis G (2008) Structure, stability, dipole polarizability and differential polarizability in small gallium arsenide clusters from all-electron ab initio and density-functional-theory calculations. Phys Rev A 77(013201):1–7. https://doi.org/10.1103/PhysRevA.77.013201

    Article  CAS  Google Scholar 

  • Khan B, Khalid M, Shah MR, Tahir MN, Asif HM Aliabad HAR, Hussain A (2020) Synthetic, spectroscopic, SC-XRD and nonlinear optical analysis of potent hydrazide derivatives: A comparative experimental and DFT/ TD-DFT exploration. J Mol Struc 1200:127140. https://doi.org/10.1016/j.molstruct.2019.127140

  • Kumar S, Radha A, Kour M, Kumar R, Chouaih A, Pandey SK (2019) DFT studies of disubstituted diphenyldithiophosphates of nickel(II): Structural and some spectral parameters. J Mol Struct 1185:212–218

    Article  CAS  Google Scholar 

  • Kumara K, Harish KP, Shivalingegowdac N, Tandond HC, Mohana KN, Lokanath NK (2017) Crystal structure studies, Hirshfeld surface analysis and DFT calculations of novel 1-[5-(4- methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine derivatives. Chem Data Collect 11(12):40–58

    Article  Google Scholar 

  • Kuruvilla TK, Prasana JC, Muthu S, George J, Mathew SA (2018) Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method. Spectrochim Acta A Mol Biomol Spectrosc 188:382–393

    Article  CAS  PubMed  Google Scholar 

  • Latefat B, Emami S, Mohammadhosseini N, Faramarzi MA, Samadi N, Shafiee A, Foroumadi A (2007) Synthesis and antibacterial activity of New N-[2-(Thiophen-3-yl)ethyl] Piperazinyl Quinolones. Chem Pharm Bull 55(6):894–898

    Article  Google Scholar 

  • Lescos L, Sitkiewicz SP, Beaujean P, Desce MB, Champagne B, Matito E, Castet F (2020) Performance of DFT functionals for calculating the second-order nonlinear optical properties of dipolar Merocyanines. Phys Chem Phys 22:16579–16594

    Article  CAS  Google Scholar 

  • Makhloufy SE, Majdi EM, Ouasri A, Chtita S, Saadi M, Ammari LE, Cherqaoui A, Belaaouad S (2020) Synthesis, crystal structure, IR, Raman-spectroscopy and DFT computation of monostrontium phosphate monohydrate, Sr(H2PO4)2·H2O. L Coord Chem 73(16):2328–2346. https://doi.org/10.1080/00958972.2020.1815014

    Article  CAS  Google Scholar 

  • McLean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143(12):3703–3711. https://doi.org/10.1099/00221287-143-12-3703

    Article  Google Scholar 

  • Mishra HN, Kumar SR, Vijay N, Satish C, Kumar SA, Kuamr SV, Onkar P, Leena S (2013) Electronic structure, non-linear properties and Vibrational analysis of ortho, meta and para-Hydroxybenzaldehyde by density functional theory. Res J Rec Sci 2:150–157

    CAS  Google Scholar 

  • Mumita MA, Pala TK, Alam MA, Islama AAM, Paul S, Sheikh MC (2020) DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3N-(2,4,5-trimethoxyphenylmethylene) hydrazinecarbodithioate. J Mol Struct 1220:128715

    Article  Google Scholar 

  • NCCLS (2000) Performance Standards for Antimicrobial Susceptibility Testing: 10th Informational Supplement (Aerobic Dilution, MIC Testing Supplemental Tables. NCCLS document M100-S10(M7), supplement to NCCLS document M7-A5 (MIC testing). National Committee for Clinical Laboratory.

  • NCCLS (2003) Performance Standards for Antimicrobial Susceptibility Testing:13th Informational Supplement (Disk Diffusion Supplemental Tables). NCCLS document M100-S13 (M2), supplement to NCCLS document M2-A8 (disk diffusion).

  • Oladipo SD, Tolufashe GF, Mocktar C, Omondi B (2021) Ag(I) symmetrical N, N′ -diarylformamidine dithiocarbamate PPh3 complexes: Synthesis, structural characterization, quantum chemical calculations and in vitro biological studies. Inorg Chim Acta 520:120316

    Article  CAS  Google Scholar 

  • OSIRIS Property Explorer, Allschwil, Switzerland: Actelion Pharmaceuticals Ltd., http://www.organic-chemistry.org/prog/peo/. Accessed October 2021.

  • Palatinus L, Chapuis G (2007) SUPERFLIP-A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790

    Article  CAS  Google Scholar 

  • Pieczka A, Ertl A, Gołębiowska B, Jeleń P, Kotowski J, Nejbert K, Stachowicz M, Giester G (2020) Crystal structure and Raman spectroscopic studies of OH stretching vibrations in Zn-rich fluor-elbaite. Am Mineral 105:1622–1630

    Article  Google Scholar 

  • Prabavathi N, Senthil NN, Krishnakumar V (2015) Spectroscopic investigation (FT-IR, FT-Raman, NMR and UV-Vis), conformational stability, NBO and thermodynamic analysis of 1-(2-Methoxyphenyl) Piperazine and 1-(2-Chlorophenyl) Piperazine by DFT approach. Pharm Analy Acta 6(7):2–20. https://doi.org/10.4172/2153-2435.1000391

    Article  CAS  Google Scholar 

  • Rached AB, Maalej W, Guionneau P, Daro N, Mhiri T, Feki H, Elaoud Z (2018) Synthesis, crystal structure, and vibrational and dft simulation studies of benzylammonium dihydrogen phosphate. J Phys Chem Solids 123:150–156

    Article  Google Scholar 

  • Rani M, Jayanthi S, Kabilan s, Ramachandran R (2022) Synthesis, spectral, crystal structure, hirshfeld surface, computational analysis, and antimicrobial studies of Ethyl-(E)-4-(2-(2-arylidenehydrazinyl)-2-oxoethyl)piperazine-1-carboxylates. J Mol Struct 1252:132082. https://doi.org/10.1016/j.molstruc.2021.132082

  • Rathi AK, Syed R, Shin HS, Petel RV (2016) Piperazine derivatives for therapeutic use: a patent review (2010-present). Expert Opin the Pat 26(7):777–797. https://doi.org/10.1080/13543776.2016.1189902

    Article  CAS  Google Scholar 

  • Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting ıntra- and ıntermolecular reactivity sequences: carbonyl compounds. J Phys Chem A 102:3746–3755

    Article  CAS  Google Scholar 

  • RSCB PDB Protein Data Bank. https://www.rcsb.org/. Accessed 01 October 2021.

  • Sanad SMH, Mekky AEM (2020) Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate. Synthetıc Commun 20:1468–1485

    Article  Google Scholar 

  • Sarıkaya EK, Dereli O (2013) Molecular structure and vibrational spectra of 7-Methoxy-4-methylcoumarin by density functional method. J Mol Struct 1052:214–220. https://doi.org/10.1016/j.molstruc.2013.08.024

    Article  CAS  Google Scholar 

  • Seth SK (2014) Structural elucidation and contribution of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. J Mol Struct 1064:70–75

    Article  CAS  Google Scholar 

  • Sethi A, Singh RP, Shukla D, Singh P (2016) Synthesis of novel pregnane-diosgenin prodrugs via ring a and ring a connection: a combined experimental and theoretical studies. J Mol Struct 1125:616–623

    Article  CAS  Google Scholar 

  • Sharma RN, Ravani R (2013) Synthesis and screening of 2-(2-(4-substituted piperazine-1-yl)-5-phenylthiazol-4-yl)-3-aryl quinazolinone derivatives as anticancer agents. Med Chem Res 22:2788–2794. https://doi.org/10.1007/s00044-012-0260-2

    Article  CAS  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  • Singh G, Priyanka DMSS, Devi A, Kaur D, Saini A (2022) Chalcone appended Organosilanes and their silica nanoparticles based UV–vis and fluorometric probes for Co2+ ions detection. Inorganica Chim Acta 535:120827. https://doi.org/10.1016/j.ica.2022.120827

  • Singh P, Islam SS, Ahmad H, Prabaharan A (2018) Spectroscopic investigation (FT-IR, FT-Raman), HOMO-LUMO, NBO, and molecular docking analysis of N-ethyl-N-nitrosourea, a potential anticancer agent. J Mol Struct 1154:39–50. https://doi.org/10.1016/j.molstruc.2017.10.012

    Article  CAS  Google Scholar 

  • Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Cryst 54(3):1006–1011

    Article  CAS  Google Scholar 

  • Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D Biol Crystallogr 65:148–155. https://doi.org/10.1107/S090744490804362X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Gupta P, Sethi A, Pratap SR (2016) One pot synthesis of Curcumin-NSAIDs prodrug, spectroscopic characterization, conformational analysis, chemical reactivity, intramolecular interactions and first order hyperpolarizability by DFT method. J Mol Struct 1117:173–180. https://doi.org/10.1016/j.molstruc.2016.03.033

    Article  CAS  Google Scholar 

  • Stigliani JL, Genisson VB, Bernadou J, Pratviel G (2012) Cross-docking study on InhA inhibitors: a combination of Autodock Vina and PM6-DH2 simulations to retrieve bio-active conformations. Org Biomol Chem 10:6341–6349

    Article  CAS  PubMed  Google Scholar 

  • Subashini K, Periandy S (2016) Spectroscopic (FT-IR, FT-Raman, UV, NMR, NBO) investigation and molecular docking study of (R)- 2-Amino-1-PhenylEthanol. J Mol Struct 1117:240–256. https://doi.org/10.1016/j.molstruc.2016.03.063

    Article  CAS  Google Scholar 

  • Tahir S, Mahmood T, Dastgir F, Haq I, Waseem A, Rashid U (2019) Design, synthesis and anti-bacterial studies of piperazine derivatives against drug resistant bacteria Eur J Med Chem 166:224–231.

  • Tamer O, Atalay AS, Avcı D, Atalay Y, Tarcan E, Marchewka MK (2016) Optimized geometry, vibration (IR and Raman) spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: a theoretical study. Mater Sci Pol 34(1):192–203

    Article  CAS  Google Scholar 

  • Uetrecht J (2001) Prediction of a new drug's potential to cause idiosyncratic reactions (2001) Curr Opin Drug Discov Dev 4(1):55–59.

  • Ulahannan RT, Kannan V, Vidya V, Sreekumar K (2020) Synthesis and DFT studies of the structure—NLO activity evaluation of 2-(4-methoxyphenyl)-1,4,5-triphenyl-2,5-dihydro-1H-imidazole. J Mol Struc 1199(127004):1–7. https://doi.org/10.1016/j.molstruc.2019.127004

  • Uzun S, Esen Z, Koç E, Usta NC, Ceylan M (2019) Experimental and density functional theory (MEP, FMO, NLO, Fukui functions) and antibacterial activity studies on 2-amino-4-(4-nitrophenyl)-5,6-dihydrobenzo [h] quinoline-3-carbonitrile. J Mol Struct 1178:450–457

    Article  CAS  Google Scholar 

  • Weiderhold KN, Randall-Hlubek DA, Polin LA, Hamel E, Mooberry SL (2006) CB694, a novel antimitotic with antitumor activities. Int J Cancer 118:1032–1040. https://doi.org/10.1002/ijc.21424

    Article  CAS  PubMed  Google Scholar 

  • X-AREA Version, 1.18 and X-RED32 Version 1.04 (2002) Stoe & Cie. Darmstadt, Germany

  • Yurdakul S, Badoglu S, Gulesci Y (2015) Experimental and theoretical study on Free 5-Nitroquinoline, 5-Nitroisoquinoline, and Their Zinc (II) Halide Complexes. Spectrochim Acta A Mol Biomol Spectr 137:945–956. https://doi.org/10.1016/j.saa.2014.0897

    Article  CAS  Google Scholar 

  • Yurdakul S, Temel E, Buyukgungor O (2019) Crystal structure, spectroscopic characterization, thermal properties and theoretical ınvestigations on [Ag(methyl 4-pyridylketone)2NO3]. J Mol Struct 1191:301–313. https://doi.org/10.1016/j.molstruc.2019.04.071

    Article  CAS  Google Scholar 

  • Zacharias AO, Varghese A, Akshaya KB, Savitha MS, George L (2018) DFT, spectroscopic studies, NBO, NLO and Fukui functional analysis of 1-(1-(2,4-difluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethylidene) thiosemicarbazide J Mol Struct 1158:1–3.

  • Zhang R, Du B, Sun G, Sun Y (2010) Experimental and Theoretical Studies on o-, m- and p-Chlorobenzylideneaminoantipyrines. Spectrochim Acta A: Mol Biomol Spectr 75A: 1115–1124. https://doi.org/10.1016/j.saa.2009.12.067

Download references

Acknowledgements

This study was supported by Scientific Research Projects Unit of Ondokuz Mayıs University (Project No: PYO.FEN.1906.19.001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senay Yurdakul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Appendix A: Supplementary data

Appendix A: Supplementary data

CCDC 2,063,536 contains the supplementary crystallographic data for the compound reported in this article. These data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: + 44 1223 336 033, e-mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucuk, C., Yurdakul, S., Özdemir, N. et al. Structural and spectroscopic characterization, electronic properties, and biological activity of the 4-(3-methoxyphenyl)piperazin-1-ium 4-(3-methoxyphenyl)piperazine-1-carboxylate monohydrate. Chem. Pap. 77, 2793–2815 (2023). https://doi.org/10.1007/s11696-023-02667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-023-02667-w

Keywords

Navigation