Skip to main content
Log in

Chitosan as adsorbent for removal of some organic dyes: a review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Water pollution is a significant problem that affects the environment and human life. There are a lot of pollutant types, such as chlorophenols, dioxins, benzofuran, polychlorinated compounds, and organic dyes. Among them, organic dyes gained a lot of interest recently, because of their wide usages, chemical stability, harmful effects on water bodies, and resistance to biodegradation. Various water treatment techniques have been used to reduce organic dyes dangerous effects, including biological, physical, and chemical techniques. Adsorption is a one favorable technique, due to its relatively low cost, availability, simple operation, and rapid results. Modifications done on chitosan can enhance its physio-chemical properties and adsorption capacity. They also allowed the use of chitosan in various forms, such as chitosan compositions with metals, clays, and other polymers, hydrogels, aerogels, gel beads, and Schiff base derivatives. The core of the ongoing review will discuss the synthesis, characterization, physical and chemical properties of some chitosan-based adsorbents which used for the adsorption of three organic dyes: methylene blue, methyl orange, and sunset yellow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdul Mubarak NS et al (2020) Immobilized Fe-loaded chitosan film for methyl orange dye removal: competitive ions, reusability, and mechanism. J Polym Environ 29(4):1050–1062

    Google Scholar 

  • Annan E et al (2021) Synthesis and characterization of hydroxyapatite- (HAP-) clay composites and adsorption studies on methylene blue for water treatment. J Chem 2021:1–15

    Google Scholar 

  • Attallah OA, Mamdouh W (2020) Development and optimization of pectin/chitosan magnetic sponge for efficient cationic dyes removal using Box–Behnken design. Int J Environ Sci Technol 18(1):131–140

    Google Scholar 

  • Azadfara M, Tahermansourib H, Qomi M (2020) Application of the graphene oxide/chitosan nanocomposite in the removal of methyl orange from aqueous solutions: a mechanism study. Indian J Chem 60A:209–219

    Google Scholar 

  • Babazadeh M et al (2021) Comprehensive batch and continuous methyl orange removal studies using surfactant modified chitosan-clinoptilolite composite. Sep Purif Technol 267:118601

    CAS  Google Scholar 

  • Bahrudin NN, Nawi MA (2019) Mechanistic of photocatalytic decolorization and mineralization of methyl orange dye by immobilized TiO2/chitosan-montmorillonite. J Water Process Eng 31:100843

    Google Scholar 

  • Bahrudin NN, Nawi MA, Zainal Z (2020) Insight into the synergistic photocatalytic-adsorptive removal of methyl orange dye using TiO2/chitosan based photocatalyst. Int J Biol Macromol 165(Pt B):2462–2474

    CAS  PubMed  Google Scholar 

  • Borsagli FGLM et al (2019) Multi-functional eco-friendly 3D scaffolds based on N-acyl thiolated chitosan for potential adsorption of methyl orange and antibacterial activity against Pseudomonas aeruginosa. J Environ Chem Eng 7(5):103286

    Google Scholar 

  • Cai X et al (2019) Design and preparation of chitosan-crosslinked bismuth ferrite/biochar coupled magnetic material for methylene blue removal. Int J Environ Res Public Health 17(1):6

    PubMed  PubMed Central  Google Scholar 

  • Chen B et al (2019) A magnetically recyclable chitosan composite adsorbent functionalized with EDTA for simultaneous capture of anionic dye and heavy metals in complex wastewater. Chem Eng J 356:69–80

    CAS  Google Scholar 

  • Deng W et al (2020) Honeycomb-like structure-tunable chitosan-based porous carbon microspheres for methylene blue efficient removal. Carbohydr Polym 247:116736

    CAS  PubMed  Google Scholar 

  • Dinh HT, Tran NT, Trinh DX (2021) Investigation into the adsorption of methylene blue and methyl orange by UiO-66-NO2 nanoparticles. J Anal Methods Chem 2021:5512174

    PubMed  PubMed Central  Google Scholar 

  • Ediati R et al (2021) Chitosan/UiO-66 composites as high-performance adsorbents for the removal of methyl orange in aqueous solution. Mater Today Chem 21:100533

    CAS  Google Scholar 

  • El-Kousy SM, El-Shorbagy HG, El-Ghaffar MAA (2020) Chitosan/montmorillonite composites for fast removal of methylene blue from aqueous solutions. Mater Chem Phys 254:123236

    CAS  Google Scholar 

  • Foroughnia A et al (2021) Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: evaluation of methyl orange removal and antibacterial activity. Int J Biol Macromol 177:83–91

    CAS  PubMed  Google Scholar 

  • Hassan H et al (2019) New chitosan/silica/zinc oxide nanocomposite as adsorbent for dye removal. Int J Biol Macromol 131:520–526

    CAS  PubMed  Google Scholar 

  • Huang L et al (2021) Facile preparation of taurine modified magnetic chitosan nanocomposites as biodegradable adsorbents toward methylene blue. Environ Technol 42(20):3191–3204

    CAS  PubMed  Google Scholar 

  • Hussain S et al (2021) Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int J Biol Macromol 168:383–394

    CAS  PubMed  Google Scholar 

  • Jawad AH et al (2019) Biofilm of cross-linked chitosan-ethylene glycol diglycidyl ether for removal of reactive red 120 and Methyl Orange: adsorption and mechanism studies. J Environ Chem Eng 7(2):102965

    CAS  Google Scholar 

  • Jawad AH et al (2020a) Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol 163:756–765

    CAS  PubMed  Google Scholar 

  • Jawad A, Aazmi MSB, Jawad A (2020b) Statistical optimization for dye removal from aqueous solution by cross-linked chitosan composite. Sci Lett 14(2):1–14

    Google Scholar 

  • Jiang Y et al (2018) Cross-linked chitosan/beta-cyclodextrin composite for selective removal of methyl orange: adsorption performance and mechanism. Carbohydr Polym 182:106–114

    CAS  PubMed  Google Scholar 

  • Kang S et al (2018) Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent. Appl Surf Sci 448:203–211

    CAS  Google Scholar 

  • Kang S et al (2020) Enhanced removal of methyl orange on exfoliated montmorillonite/chitosan gel in presence of methylene blue. Chemosphere 238:124693

    CAS  PubMed  Google Scholar 

  • Kaur K, Jindal R (2019) Self-assembled GO incorporated CMC and chitosan-based nanocomposites in the removal of cationic dyes. Carbohydr Polym 225:115245

    CAS  PubMed  Google Scholar 

  • Kazemi J, Javanbakht V (2020) Alginate beads impregnated with magnetic Chitosan@Zeolite nanocomposite for cationic methylene blue dye removal from aqueous solution. Int J Biol Macromol 154:1426–1437

    CAS  PubMed  Google Scholar 

  • Ke P et al (2020) Preparation of quaternary ammonium salt-modified chitosan microspheres and their application in dyeing wastewater treatment. ACS Omega 5(38):24700–24707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MN, Chowdhury M, Rahman MM (2021a) Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution. Mater Today Sustain 13:100077

    Google Scholar 

  • Khapre MA, Pandey S, Jugade RM (2021) Glutaraldehyde-cross-linked chitosan-alginate composite for organic dyes removal from aqueous solutions. Int J Biol Macromol 190:862–875

    CAS  PubMed  Google Scholar 

  • Kong D, Wilson LD (2020) Uptake of methylene blue from aqueous solution by pectin-chitosan binary composites. J Compos Sci 4(3):95

    CAS  Google Scholar 

  • Kumar P et al (2019) Synthesis and characterization of crosslinked chitosan for effective dye removal antibacterial activity. Int J Biol Macromol 139:752–759

    CAS  PubMed  Google Scholar 

  • Leon O et al (2018) Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydr Polym 194:375–383

    CAS  PubMed  Google Scholar 

  • Liu Y et al (2018) Fabrication of three-dimensional porous β-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution. Colloids Surf A 539:1–10

    CAS  Google Scholar 

  • Liu DM et al (2020) Facile preparation of chitosan modified magnetic kaolin by one-pot coprecipitation method for efficient removal of methyl orange. Carbohydr Polym 245:116572

    CAS  PubMed  Google Scholar 

  • Liu X et al (2021) Uptake of methylene blue on divinylbenzene cross-linked chitosan/maleic anhydride polymer by adsorption process. Colloids Surf A Physicochem Eng Asp 629:127424

    CAS  Google Scholar 

  • Liu Q et al (2021a) HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr Polym 255:117402

    CAS  PubMed  Google Scholar 

  • Liu X et al (2021b) Uptake of methylene blue on divinylbenzene cross-linked chitosan/maleic anhydride polymer by adsorption process. Colloids Surf A 629:127424

    CAS  Google Scholar 

  • Ma H et al (2019) Ultrahigh adsorption capacities for anionic and cationic dyes from wastewater using only chitosan. J Clean Prod 214:89–94

    CAS  Google Scholar 

  • Mahmoud GA et al (2020) Chitosan biopolymer based nanocomposite hydrogels for removal of methylene blue dye. SN Appl Sci 2(5):1–10

    Google Scholar 

  • Makeswari M, Saraswathi P (2020) Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite. SN Appl Sci 2(3):1–12

    Google Scholar 

  • Melo BC et al (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel. Carbohydr Polym 181:358–367

    CAS  PubMed  Google Scholar 

  • Men J et al (2021) Preparation of poly(sodium 4-styrene sulfonate) grafted magnetic chitosan microspheres for adsorption of cationic dyes. Int J Biol Macromol 181:810–823

    CAS  PubMed  Google Scholar 

  • Minisy IM, Salahuddin NA, Ayad MM (2021a) Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl Clay Sci 203:105993

    CAS  Google Scholar 

  • Minisy IM, Salahuddin NA, Ayad MM (2021b) Adsorption of methylene blue onto chitosan–montmorillonite/polyaniline nanocomposite. Appl Clay Sci 203:105993

    CAS  Google Scholar 

  • Mohamed EA et al (2020) H2O2-activated anthracite impregnated with chitosan as a novel composite for Cr(VI) and methyl orange adsorption in single-compound and binary systems: modeling and mechanism interpretation. Chem Eng J 380:122445

    CAS  Google Scholar 

  • Mohammed MI, Ismael MK, Gönen M (2020) Synthesis of chitosan-silica nanocomposite for removal of methyl orange from water: composite characterization and adsorption performance. IOP Conf Ser Mater Sci Eng 745:012084

    CAS  Google Scholar 

  • Mu Y, Ma H (2021) NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chem Eng Res Des 167:129–140

    CAS  Google Scholar 

  • Narita Y et al (2019) Ultra-rapid removal of cationic organic dyes by novel single- and double-stranded DNA immobilized on quaternary ammonium magnetic chitosan. J Environ Chem Eng 7(5):103308

    CAS  Google Scholar 

  • Niu C et al (2021) Preparation of a novel citric acid-crosslinked Zn-MOF/chitosan composite and application in adsorption of chromium(VI) and methyl orange from aqueous solution. Carbohydr Polym 258:117644

    CAS  PubMed  Google Scholar 

  • Rathinam K et al (2018) An environmentally-friendly chitosan-lysozyme biocomposite for the effective removal of dyes and heavy metals from aqueous solutions. Carbohydr Polym 199:506–515

    CAS  PubMed  Google Scholar 

  • Rezakazemi M et al (2018) Quantum chemical calculations and molecular modeling for methylene blue removal from water by a lignin-chitosan blend. Int J Biol Macromol 120(Pt B):2065–2075

    CAS  PubMed  Google Scholar 

  • Sabar S et al (2020) Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. React Funct Polym 151:104584

    CAS  Google Scholar 

  • Sabarudin A, Madjid ADR (2021) Preparation and kinetic studies of cross-linked chitosan beads using dual crosslinkers of tripolyphosphate and epichlorohydrin for adsorption of methyl orange. Sci World J 2021:6648457

    Google Scholar 

  • Salama A, Abou-Zeid RE (2021) Ionic chitosan/silica nanocomposite as efficient adsorbent for organic dyes. Int J Biol Macromol 188:404–410

    CAS  PubMed  Google Scholar 

  • Samuel MS et al (2020) Immobilization of Cu3(btc)2 on graphene oxide-chitosan hybrid composite for the adsorption and photocatalytic degradation of methylene blue. J Photochem Photobiol B 204:111809

    CAS  PubMed  Google Scholar 

  • Senol ZM et al (2020) Removal of food dyes from aqueous solution by chitosan-vermiculite beads. Int J Biol Macromol 148:635–646

    CAS  PubMed  Google Scholar 

  • Shi H et al (2020) Preparation of sulfonate chitosan microspheres and study on its adsorption properties for methylene blue. Int J Biol Macromol 163:2334–2345

    CAS  PubMed  Google Scholar 

  • Simonescu CM et al (2021) Comparative study of CoFe2O4 nanoparticles and CoFe2O4-chitosan composite for congo red and methyl orange removal by adsorption. Nanomaterials (basel) 11(3):8711

    Google Scholar 

  • Singh SP et al (2018) Hexavalent chromium ion and methyl orange dye uptake via a silk protein sericin–chitosan conjugate. RSC Adv 8(48):27027–27036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirajudheen P, Meenakshi S (2019) Facile synthesis of chitosan-La(3+)-graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 133:253–261

    CAS  PubMed  Google Scholar 

  • Soares LS et al (2021) Mixed starch/chitosan hydrogels: elastic properties as modelled through simulated annealing algorithm and their ability to strongly reduce yellow sunset (INS 110) release. Carbohydr Polym 255:117526

    CAS  PubMed  Google Scholar 

  • Tang Y et al (2018) Sorption behavior of methylene blue and rhodamine B mixed dyes onto chitosan graft poly (acrylic acid-co-2-acrylamide-2-methyl propane sulfonic acid) hydrogel. Adv Polym Technol 37(7):2568–2578

    CAS  Google Scholar 

  • Tay SY et al (2020) photocat. Chem Eng Commun 208(5):708–726

    Google Scholar 

  • Türkeş E, Sağ Açıkel Y (2019) Synthesis and characterization of magnetic halloysite–chitosan nanocomposites: use in the removal of methylene blue in wastewaters. Int J Environ Sci Technol 17(3):1281–1294

    Google Scholar 

  • Upadhyay U et al (2021) Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 251:117000

    CAS  PubMed  Google Scholar 

  • Vega-Negron AL et al (2018) Simultaneous adsorption of cationic and anionic dyes by chitosan/cellulose beads for wastewaters treatment. Int J Environ Res 12(1):59–65

    CAS  Google Scholar 

  • Vieira MLG et al (2018) Azo dyes adsorption in fixed bed column packed with different deacetylation degrees chitosan coated glass beads. J Environ Chem Eng 6(2):3233–3241

    CAS  Google Scholar 

  • Vigneshwaran S et al (2021) In situ fabrication of ternary TiO2 doped grafted chitosan/hydroxyapatite nanocomposite with improved catalytic performance for the removal of organic dyes: experimental and systemic studies. Colloids Surf A Physicochem Eng Asp 611:125789

    CAS  Google Scholar 

  • Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83(4):1446–1456

    CAS  Google Scholar 

  • Wang W et al (2018a) Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr Polym 198:518–528

    CAS  PubMed  Google Scholar 

  • Wang W et al (2018b) Facile preparation of magnetic chitosan/poly (vinyl alcohol) hydrogel beads with excellent adsorption ability via freezing-thawing method. Colloids Surf A 553:672–680

    CAS  Google Scholar 

  • Wang Z et al (2021a) Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process. Colloids Surf A Physicochem Eng Asp 613:126104

    CAS  Google Scholar 

  • Wang Z et al (2021b) Bifunctional MnFe2O4/chitosan modified biochar composite for enhanced methyl orange removal based on adsorption and photo-Fenton process. Colloids Surf A 613:126104

    CAS  Google Scholar 

  • Wong KT, Wong VL, Lim SS (2020a) Bio-sorptive removal of methyl orange by micro-grooved chitosan (GCS) beads: optimization of process variables using Taguchi L9 orthogonal array. J Polym Environ 29(1):271–290

    Google Scholar 

  • Wong VL, Tay SY, Lim SS (2020b) Enhanced removal of Methyl Orange from aqueous solution by chitosan-CaCl2 beads. IOP Conf Ser Mater Sci Eng 736:022049

    CAS  Google Scholar 

  • Wong VL, Tay SY, Lim SS (2020c) Enhanced removal of Methyl Orange from aqueous solution by Chitosan-CaCl2 beads. IOP Conf Ser Mater Sci Eng 736:022049

    CAS  Google Scholar 

  • Yahia MB, Sellaoui L (2020) Adsorptive removal of sunset yellow dye by biopolymers functionalized with (3–aminopropyltriethoxysilane): analytical investigation via advanced model. J Mol Liq 312:113395

    CAS  Google Scholar 

  • Yang X et al (2018) One-step fabrication of chitosan-Fe(OH)3 beads for efficient adsorption of anionic dyes. Int J Biol Macromol 117:30–41

    CAS  Google Scholar 

  • Yuvaraja G et al (2020) Preparation of novel aminated chitosan schiff’s base derivative for the removal of methyl orange dye from aqueous environment and its biological applications. Int J Biol Macromol 146:1100–1110

    CAS  PubMed  Google Scholar 

  • Zeraatkar Moghaddam A et al (2018) Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes. Int J Biol Macromol 120(Pt B):1714–1725

    CAS  PubMed  Google Scholar 

  • Zhang C et al (2018) Simple fabrication of chitosan/graphene nanoplates composite spheres for efficient adsorption of acid dyes from aqueous solution. Int J Biol Macromol 112:1048–1054

    CAS  PubMed  Google Scholar 

  • Zhang L et al (2020a) Adsorption of dyes brilliant blue, sunset yellow and tartrazine from aqueous solution on chitosan: analytical interpretation via multilayer statistical physics model. Chem Eng J 382:122952

    CAS  Google Scholar 

  • Zhang C et al (2020b) Facile preparation of polyacrylamide/chitosan/Fe3O4 composite hydrogels for effective removal of methylene blue from aqueous solution. Carbohydr Polym 234:115882

    CAS  PubMed  Google Scholar 

  • Zhao S et al (2021a) Easy-handling carbon nanotubes decorated poly(arylene ether nitrile)@tannic acid/carboxylated chitosan nanofibrous composite absorbent for efficient removal of methylene blue and congo red. Colloids Surf A Physicochem Eng Asp 626:127069

    CAS  Google Scholar 

  • Zhao H et al (2021b) Facile preparation of self-assembled chitosan-based POSS-CNTs-CS composite as highly efficient dye absorbent for wastewater treatment. ACS Omega 6(1):294–300

    CAS  PubMed  Google Scholar 

  • Zhu W et al (2020) Preparation of chitosan-graphene oxide composite aerogel by hydrothermal method and its adsorption property of Methyl Orange. Polymers (basel) 12(9):2169

    CAS  PubMed  Google Scholar 

  • Zia Q et al (2021) Cross-linked chitosan coated biodegradable porous electrospun membranes for the removal of synthetic dyes. React Funct Polym 166:104995

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Saigl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saigl, Z., Tifouti, O., Alkhanbashi, B. et al. Chitosan as adsorbent for removal of some organic dyes: a review. Chem. Pap. 77, 2363–2405 (2023). https://doi.org/10.1007/s11696-022-02641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02641-y

Keywords

Navigation