Skip to main content
Log in

Contributions of conformations, vibronic coupling, and hydration to photoexcitation of coumarin 334 in aqueous solution

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Vibronic coupling and hydrogen bonding with solvent were taken into account when analyzing the absorption of coumarin C334 in water. Both syn and anti dye conformations were considered. It turned out that the B3LYP functional in conjunction with the IEFPCM solvent description and the 6–31 +  + G(d,p) basis set provides a good prediction of the experimental spectrum. A single molecule (purely implicit solvent specification) was used as a reference for the analysis of its hydrate complexes (combined solvent specification). Upon excitation of both conformations of the dye, the rotation of the acetyl group does not occur. The conformations are separated from each other by a potential barrier with a height of about 12 kT. The addition of the second bound water molecules weakens the first H-bond. HOMOs covers water molecules bound to the nitrogen atom of the dye only. Upon excitation, the main shift of the electron density occurs from C10 to C4 neighboring atom. Thus, large-scale ICT not occur. The absolute value of the dipole moment upon excitation increases approximately 1.4…1.5 times (more for syn conformation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al Tememee NAA, Habeeb NZ (2016) Energy transfer process between two laser compounds coumarin 334 & rhodamine 590. Ira. J Phys 14:61–70

    Article  Google Scholar 

  • Al-Aqmar DM, El Gohary ZH, H.A. (2019) Othman, M.T.H. Abou Kana, Optical characterization of Coumarin 334 hybrid with silver nanoparticles in imidazolium-based ionic liquid. Dyes Pigments 165:361–371

    Article  CAS  Google Scholar 

  • Alia JD, Flack JA (2020) Unspecified verticality of Franck-Condon transitions, absorption and emission spectra of cyanine dyes, and a classically inspired approximation. RSC Adv 10:43153–43167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arici E, Greiner A, Raubacher F, Wendorff JH (2000a) Time dependence of the steady state fluorescence in polymer guest-host systems. Macromol Chem Phys 201:1679–1686

    Article  CAS  Google Scholar 

  • Arici E, Greiner A, Hou H, Reuning A, Wendorff JH (2000b) Optical properties of guest host systems based on cellulose derivatives. Macromol Chem Phys 201:2083–2090

    Article  CAS  Google Scholar 

  • Baiardi A, Bloino J, Barone V (2013) General time dependent approach to vibronic spectroscopy including Franck-Condon, Herzberg-Teller, and Duschinsky effects. J Chem Theory Comput 9:4097–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  • Condon EU (1928) Nuclear motions associated with electron transitions in diatomic molecules. Phys Rev 32:858–872

    Article  CAS  Google Scholar 

  • Dennington R, Keith TA, Millam JM (2016) GaussmView, Version 6.1, Semichem Inc., Shawnee Mission KS

  • Dierksen M, Grimme S (2004) The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of “exact” Hartree-Fock exchange. J Phys Chem A 108:10225–10237

    Article  CAS  Google Scholar 

  • Dutt GB, Ghanty TK (2003) Rotational diffusion of coumarins in electrolyte solutions: the role of ion pairs. J Phys Chem B 107:3257–3264

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16, Revision C.01, Inc., Wallingford CT

  • Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab Initio molecular orbital theory. Wiley, New York

    Google Scholar 

  • Hessz D, Hégely B, Kállay M, Vidóczy T, Kubinyi M (2014) Solvation and protonation of coumarin 102 in aqueous media: a fluorescence spectroscopic and theoretical study. J Phys Chem A 118:5238–5247

    Article  CAS  PubMed  Google Scholar 

  • http://www.chemspider.com/Chemical-Structure.65516.html.

  • Huang J, Bekiari V, Lianos P, Couris S (1999) Study of poly(methyl methacrylate) thin films doped with laser dyes. J Luminesc 81:285–291

    Article  CAS  Google Scholar 

  • Improta R, Barone V, Scalmani G, Frisch MJ (2006) A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J Chem Phys 125:054103

    Article  PubMed  Google Scholar 

  • Jacquemin D, Brémond E, Ciofini I, Adamo C (2012) Impact of vibronic couplings on perceived colors: two anthraquinones as a working example. J Phys Chem Lett 3:468–471

    Article  CAS  PubMed  Google Scholar 

  • Jasinski JP, Jasinski JM, Crosby DJ (2007) 10-Acetyl-2,3,6,7-tetrahydro-1H,5H,11H-1-benzopyrano[6,7,8-ij]quinolizin-11-one. Acta Cryst E63:3848–3849

    Google Scholar 

  • Jiang L-L, Liu W-L, Song Y-F, He X, Wang Y, Wu H-L, Yang Y-Q (2012) Solvent effects on spectral property and dipole moment of the lowest excited state of coumarin 343 dye. Chin J Chem Phys 25:577–584

    Article  Google Scholar 

  • Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, Kim TW, Kang C, Kim JS (2012a) A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials 33:945–953

    Article  CAS  PubMed  Google Scholar 

  • Jung HS, Pradhan T, Han JH, Heo KJ, Lee JH, Kang C, Kim JS (2012b) Molecular modulated cysteine-selective fluorescent probe. Biomaterials 33:8495–8502

    Article  CAS  PubMed  Google Scholar 

  • Kantchev EAB, Norsten TB, Sullivan MB (2012) Time-dependent density functional theory (TDDFT) modelling of Pechmann dyes: from accurate absorption maximum prediction to virtual dye screening. Org Biomol Chem 10:6682–6692

    Article  CAS  PubMed  Google Scholar 

  • Kim MH, Jang HH, Yi S, Chang SK, Han MS (2009) Coumarin-derivative-based off-on catalytic chemodosimeter for Cu2+ ions. Chem Commun 32:4838–4840

    Article  Google Scholar 

  • Koefod RS, Mann KR (1989) Preparation, photochemistry, and electronic structures of coumarin laser dye complexes of Cyclopentadienylruthenium (II). Inorg Chem 28:2285–2290

    Article  CAS  Google Scholar 

  • Koefod RS, Mann KR (1991) Common emissive intermediates in the thermal and photochemical reactions of nonemissive Cyclopentadienylruthenium (II) complexes of coumarin laser dyes. Inorg Chem 30:2221–2228

    Article  CAS  Google Scholar 

  • Konecna R, Viet Nguyen H, Stanisavljevic M, Blazkova I, Krizkova S, Vaculovicova M, Stiborova M, Eckschlager T, Zitka O, Adam V, Kizek R (2014) Doxorubicin encapsulation investigated by capillary electrophoresis with laser-induced fluorescence detection. Chromatographia 77:1469–1476

    Article  CAS  Google Scholar 

  • Lapina VA, Pavich TA, Pershukevich PP, Trofimov AV, Trofimova NN, Tsaplev YB, Zak PP (2017) Exploring the utility of coumarins - based luminescent spectra converters. J Phys Org Chem 30:e3731

    Article  Google Scholar 

  • Lee H, Lee M (2012) Excluded volume effect in the fluorescence energy transfer of single donor−multiple acceptors in polymer. J Phys Chem B 116:11857–11862

    Article  CAS  PubMed  Google Scholar 

  • Litvinyuk IV (1997) A method for separation of homogeneous and inhomogeneous components of spectral broadening of rigid systems. J Phys Chem A 101:813–816

    Article  CAS  Google Scholar 

  • Liu X, Cole JM, Low KS (2013) Solvent effects on the UV-vis absorption and emission of optoelectronic coumarins: a comparison of three empirical solvatochromic models. J Phys Chem C 117:14731–14741

    Article  CAS  Google Scholar 

  • Maridevarmath CV, Naik L, Malimath GH (2019) Dielectric, photophysical, solvatochromic, and DFT studies on laser dye coumarin 334, Brazil. J Phys 49:151–160

    CAS  Google Scholar 

  • McCarthy PK, Blanchard GJ (1993) AM1 study of the electronic structure of coumarins. J Phys Chem 97:12205–12209

    Article  CAS  Google Scholar 

  • Miao C, Shi Y (2011) Reconsideration on hydrogen bond strengthening or cleavage of photoexcited coumarin 102 in aqueous solvent: a DFT/TDDFT study. J Comput Chem 32:3058–3061

    Article  CAS  PubMed  Google Scholar 

  • Moylan CR (1994) Molecular hyperpolarizabilities of coumarin dyes. J Phys Chem 98:13513–13516

    Article  CAS  Google Scholar 

  • Nemkovich NA, Baumann W, Reis H, Zvinevich YV (1997a) Study of coumarin fluorescent probes by electro-optical and laser spectrofluorimetry methods. Proc SPIE 2980:277-786X

    Google Scholar 

  • Nemkovich NA, Reis H, Baumann W (1997b) Ground and excited state dipole moments of coumarin laser dyes: Investigation by electro-optical absorption and emission methods. J Luminesc 71:255–263

    Article  CAS  Google Scholar 

  • Nunez DZ, Barrias P, Jiron GC, Zanartu MSU, Alarcon CL, Vieyra FEM, Borsarelli CD, Alarcon EI, Aspee A (2018) Atypical antioxidant activity of non-phenolic amino-coumarins. RSC Adv 8:1927–1933

    Article  Google Scholar 

  • Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  • pubchem.ncbi.nlm.nih.gov/compound/Coumarin-334.

  • Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358

    Article  CAS  Google Scholar 

  • Reynolds GA, Drexhage KH (1975) New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Optics Commun 13:225–225

    Article  Google Scholar 

  • Romodin LA, Vladimirov YA, Shangin SV, Vladimirov GK, Lysenko NP, Demikhov EI (2020) Isoquinoline coumarin derivatives as chemiluminescence activators in reactions of lipid peroxidation. Biophysics 65:577–586

    Article  CAS  Google Scholar 

  • Rozas I, Alkorta I, Elguero J (1998) Bifurcated hydrogen bonds: three-centered interactions. J Phys Chem A 102:9925–9932

    Article  CAS  Google Scholar 

  • Sahyun MRV, Goertz M (2003) Hyper-Rayleigh scattering (HRS) as a mechanism for biphotonic fluorescence excitation in microscopy. Proc SPIE 4963:1605–7422

    Google Scholar 

  • Sahyun MRV, Sharma DK (1992) Photophysics of rigidized 7-aminocoumarin laser dyes: efficient intersystem crossing from higher excited state. Chem Phys Lett 189:571–576

    Article  CAS  Google Scholar 

  • Savenko ES, Kostjukov VV (2022) Coumarin 102 excitation in aqueous media: contributions of vibronic coupling and hydration. New J Chem 46:2241–2452

    Article  Google Scholar 

  • Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:094107

    Article  Google Scholar 

  • Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  • Soegiarto AC, Ward MD (2009) Directed organization of dye aggregates in hydrogen-bonded host frameworks. Crystal Growth Des 9:3803–3815

    Article  CAS  Google Scholar 

  • Sowrirajan C, Vijayan EIVM (2013) Binding of coumarin 334 with β-cyclodextrin and with C-hexylpyrogallol[4]arene: opposite fluorescence behavior. J Spectrosc 2013:408506

    Article  Google Scholar 

  • Susi H (1972) The strength of hydrogen bonding: Infrared spectroscopy. Methods Enzymol 26:381–391

    Article  CAS  PubMed  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  PubMed  Google Scholar 

  • Vaculovicova M, Dostalova S, Milosavljevic V, Kopel P, Adam V, Kizek R (2015) Characterization of carbon quantum dots by capillary electrophoresis with laser-induced fluorescence detections. J Metallomics Nanotech 3:97–101

    Google Scholar 

  • Wells NP, McGrath MJ, Siepmann JI, Underwood DF, Blank DA (2008) Excited state hydrogen bond dynamics: coumarin 102 in acetonitrile - water binary mixtures. J Phys Chem A 112:2511–2514

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Cao Z, Zhao Y (2012) Theoretical studies on absorption, emission, and resonance Raman spectra of coumarin 343 isomers. J Chem Phys 136:114305

    Article  PubMed  Google Scholar 

  • Zhao W, Ding Y, Xia Q (2011) Time-dependent density functional theory study on the absorption spectrum of coumarin 102 and Its hydrogen-bonded complexes. J Comput Chem 32:545–553

    Article  CAS  PubMed  Google Scholar 

  • Zuniga-Nunez D, Zamora RA, Barrias P, Tirapegui C, Poblete H, Cardenas-Jiron G, Alarcon EI, Aspee A (2018) Theoretical rationalisation of the photophysics of a TICT excited state of cinnamoyl–coumarin derivatives in homogeneous and biological membrane models. Phys Chem Chem Phys 20:27621–27629

    Article  CAS  PubMed  Google Scholar 

  • Zúniga-Núnez D, Mura F, Zamora RA, Poblete H, Fuentealba D, Aspee A (2020) Cinnamoyl–coumarin hybrid derivatives with remarkable fluorescent molecular-rotor properties in mixtures of DPPC:DOPC LUVs. Dyes Pigments 178:108356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Kostjukov.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22191 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savenko, E.S., Kostjukov, V.V. Contributions of conformations, vibronic coupling, and hydration to photoexcitation of coumarin 334 in aqueous solution. Chem. Pap. 76, 6567–6578 (2022). https://doi.org/10.1007/s11696-022-02357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02357-z

Keywords

Navigation