Skip to main content
Log in

Determination of the electrochemically active surface area by CO and hydrogen of PtSnRuTa/C-based electrocatalysts and their relationship with catalytic activity against alcohol oxidation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This work studies the influence of the addition of tantalum to the ternary PtSnRu/C electrocatalysts on the oxidation of different alcohols: methanol, ethanol, ethylene glycol, and glycerol. The physical–chemical characterizations showed an increase in the lattice parameter of the fcc (face-centered cubic) structure of Pt due to the incorporation of Sn and/or Ta metals that evidence of alloy formation. The nanoparticles range from 3.8 to 9.8 nm and present a homogeneous distribution on carbon. CO stripping voltammetry measurements were used to obtain the electrochemically active surface area (ECSA) of electrocatalysts, which showed higher values for the quaternary electrocatalysts of composition Pt24.8Sn5.0Ru1.0Ta7.7/C (21.3 m2 gPt−1), Pt8.1Sn1.3Ru1.2Ta1.0/C (29.3 m2 gPt−1), and Pt8.9Sn1.0Ru1.5Ta1.5/C (39.4 m2 gPt−1). The Pt8.9Sn1.0Ru1.5Ta1.5/C electrocatalyst presented high peak currents, compared with the other electrocatalysts, using cyclic voltammetry for methanol, ethanol, ethylene glycol, and glycerol. In chronoamperometry on ethanol, ethylene glycol, and glycerol, the Pt8.9Sn1.0Ru1.5Ta1.5/C electrocatalyst showed higher currents (24, 18, and 19 A gPt−1, respectively) compared to the other electrocatalysts. The results showed that the addition of Ru and Ta on PtSn/C nanoparticles led to an increase in the ECSA values. It can be suggested that the presence of the quaternary electrocatalyst maximizes the electronic and bifunctional mechanism which are responsible to increase the electrocatalytic activity to the alcohol oxidation. In addition, the presence of Ru and Ta together with Sn on Pt/C nanoparticles was also related to increased stability, representing an alternative for use in direct alcohol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida TS, Palma LM, Leonello PH, Morais C, Kokoh KB, De Andrade AR (2012) An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: effect of the preparation method on the electrocatalytic activity of the catalysts. J Power Sources 215:53–62

    Article  CAS  Google Scholar 

  • Almeida TS, Palma LM, Morais C, Kokoh KB, De Andrade AR (2013) Effect of adding a third metal to carbon-supported PtSn-based nanocatalysts for direct ethanol fuel cell in acidic medium. J Electrochem Soc 160:F965–F971

    Article  CAS  Google Scholar 

  • Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt–Pd and ternary Pt–Pd–Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrogen Energy 38:2900–2907

    Article  CAS  Google Scholar 

  • Artem LM, Santos DM, De Andrade AR, Kokoh KB, Ribeiro J (2012) Development of ternary and quaternary catalysts for the electrooxidation of glycerol. Sci World J 2012:1–6

    Article  Google Scholar 

  • Assumpção MHMT, De Souza RFB, Rascio DC, Silva JCM, Calegaro ML, Gaubeur I, Paixão TRLC, Hammer P, Lanza MRV, Santos MC (2011) A comparative study of the electrogeneration of hydrogen peroxide using Vulcan and Printex carbon supports. Carbon n y 49:2842–2851

    Article  Google Scholar 

  • Awaludin Z, Suzuki M, Masud J, Okajima T, Ohsaka T (2011) Enhanced electrocatalysis of oxygen reduction on Pt/TaO x/GC. J Phys Chem C 115:25557–25567

    Article  CAS  Google Scholar 

  • Badwal SPS, Giddey S, Kulkarni A, Goel J, Basu S (2015) Direct ethanol fuel cells for transport and stationary applications–a comprehensive review. Appl Energy 145:80–103

    Article  CAS  Google Scholar 

  • Basha SA, Gopal KR, Jebaraj S (2009) A review on biodiesel production, combustion, emissions and performance. Renew Sustain Energy Rev 13:1628–1634

    Article  CAS  Google Scholar 

  • Binninger T, Fabbri E, Kötz R, Schmidt TJ (2014) Determination of the electrochemically active surface area of metal-oxide supported platinum catalyst. J Electrochem Soc 161:H121–H128

    Article  CAS  Google Scholar 

  • Breeze P (2019) Power generation technologies, 3rd ed, Power Generation Technologies. Elsevier, United Kingdom.

  • Carrareto Caliman C, Palma LM, Ribeiro J (2013) Evaluation of Ni and Ti addition in PtSn/C catalysts for ethanol and glycerol electrooxidation. J Electrochem Soc 160:F853–F858

    Article  Google Scholar 

  • Ciapina EG, Santos SF, Gonzalez ER (2013) The electro-oxidation of carbon monoxide and ethanol on supported Pt nanoparticles: the influence of the support and catalyst microstructure. J Solid State Electrochem 17:1831–1842

    Article  CAS  Google Scholar 

  • Ciapina EG, Santos SF, Gonzalez ER (2018) Electrochemical CO stripping on nanosized Pt surfaces in acid media: a review on the issue of peak multiplicity. J Electroanal Chem 815:47–60

    Article  CAS  Google Scholar 

  • Cohen JL, Volpe DJ, Abruña HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Phys 9:49–77

    Article  CAS  Google Scholar 

  • Crisafulli R, Antoniassi RM, Oliveira Neto A, Spinacé EV (2014) Acid-treated PtSn/C and PtSnCu/C electrocatalysts for ethanol electro-oxidation. Int J Hydrogen Energy 39:5671–5677

    Article  CAS  Google Scholar 

  • Delmonde MVF, Nascimento MA, Nagao R, Cantane DA, Lima FHB, Varela H (2014) Production of volatile species during the oscillatory electro-oxidation of small organic molecules. J Phys Chem C 118(31):17699–17709

    Article  CAS  Google Scholar 

  • Dimakis N, Cowan M, Hanson G, Smotkin ES (2009) Attraction−repulsion mechanism for carbon monoxide adsorption on platinum and platinum−ruthenium alloys. J Phys Chem C 113:18730–18739

    Article  CAS  Google Scholar 

  • dos Santos MC, Parreira LS, De Moura Souza F, Camargo Junior J and Gentil T, (2017b) Fuel cells: hydrogen and ethanol technologies, In: (editor-in-chief), S.H. (Ed.), Reference module in materials science and materials engineering. Elsevier, Santo André, Brazil, pp. 1–22.

  • Easton EB, Pickup PG (2005) An electrochemical impedance spectroscopy study of fuel cell electrodes. Electrochim Acta 50:2469–2474

    Article  CAS  Google Scholar 

  • El Attar A, Oularbi L, Chemchoub S, El Rhazi M (2020) Preparation and characterization of copper oxide particles/polypyrrole (Cu2O/PPy) via electrochemical method: application in direct ethanol fuel cell. Int J Hydrogen Energy 45:8887–8898

    Article  Google Scholar 

  • Evangelista TCS, Paganoto GT, Guimarães MCC, Ribeiro J (2015) Raman spectroscopy and electrochemical investigations of Pt electrocatalyst supported on carbon prepared through plasma pyrolysis of natural gas. J Spectrosc 2015:1–7

    Article  Google Scholar 

  • Ferreira Frota E, Silva de Barros VV, de Araújo BRS, Gonzaga Purgatto Â, Linares JJ (2017) Pt/C containing different platinum loadings for use as electrocatalysts in alkaline PBI-based direct glycerol fuel cells. Int J Hydrogen Energy 42:23095–23106

    Article  CAS  Google Scholar 

  • Fujiwara N, Siroma Z, Yamazaki S, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185:621–626

    Article  CAS  Google Scholar 

  • Godoi DRM, Perez J, Mercedes Villullas H (2007) Influence of particle size on the properties of Pt–Ru∕C catalysts prepared by a microemulsion method. J Electrochem Soc 154:B474

    Article  CAS  Google Scholar 

  • González-Hernández M, Antolini E, Perez J (2019) Synthesis, characterization and CO tolerance evaluation in PEMFCs of Pt2RuMo electrocatalysts. Catalysts 9:61

    Article  Google Scholar 

  • Gregoire JM, Tague ME, Cahen S, Khan S, Abruña HD, DiSalvo FJ, van Dover RB (2010) Improved fuel cell oxidation catalysis in Pt 1–x Ta x. Chem Mater 22:1080–1087

    Article  CAS  Google Scholar 

  • Hadzi-Jordanov S, Angerstein-Kozlowska H, Vukovic M, Conway BE (1977) The state of electrodeposited hydrogen at ruthenium electrodes. J Phys Chem 81:2271–2279

    Article  CAS  Google Scholar 

  • Hidayati N, Scott K (2016) Electro-oxidation of ethanol on carbon supported PtSn and PtSnNi catalysts. Bull Chem React Eng Catal 11:10

    Article  CAS  Google Scholar 

  • Ho VTT, Pham HQ, Anh THT, Van Nguyen A, Quoc KAN, Vo HTH, Nguyen TT (2019) Highly stable Pt/ITO catalyst as a promising electrocatalyst for direct methanol fuel cells. Comptes Rendus Chim 22:838–843

    Article  CAS  Google Scholar 

  • Huang T, Liu J, Li R, Cai W, Yu A (2009) A novel route for preparation of PtRuMe (Me=Fe Co, Ni) and their catalytic performance for methanol electrooxidation. Electrochem Commun 11:643–646

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  PubMed  Google Scholar 

  • Inkaew P, Zhou W, Korzeniewski C (2008) CO monolayer oxidation at Pt(100) probed by potential step measurements in comparison to Pt(111) and Pt nanoparticle catalyst. J Electroanal Chem 614:93–100

    Article  CAS  Google Scholar 

  • Justin P, Hari Krishna Charan P and Ranga Rao G (2010) High performance Pt–Nb2O5/C electrocatalysts for methanol electrooxidation in acidic media. Appl Catal B Environ 100, 510–515

  • Kakinuma K, Hirayama N, Iiyama A, Watanabe M, Uchida M (2017) Electrochemical oxidation of hydrolyzed poly-oxymethylene-dimethylether by Pt and PtRu catalysts on ta-doped SnO 2 supports for direct oxidation fuel cells. J Electrochem Soc 164:F1226–F1233

    Article  CAS  Google Scholar 

  • Kim HJ, Choi SM, Green S, Tompsett GA, Lee SH, Huber GW, Kim WB (2011) Highly active and stable PtRuSn/C catalyst for electrooxidations of ethylene glycol and glycerol. Appl Catal B Environ 101:366–375

    Article  CAS  Google Scholar 

  • Li C, Baek J-B (2020) Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega 5:31–40

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta 52:6622–6629

    Article  CAS  Google Scholar 

  • Liu L, Huang Z, Wang D, Scholz R, Pippel E (2011) The fabrication of nanoporous Pt-based multimetallic alloy nanowires and their improved electrochemical durability. Nanotechnology 22:105604

    Article  PubMed  Google Scholar 

  • López-Cudero A, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2010) CO electrooxidation on carbon supported platinum nanoparticles: effect of aggregation. J Electroanal Chem 644:117–126

    Article  Google Scholar 

  • Lu G, Ning F, Wei J, Li Y, Bai C, Shen Y, Li Y, Zhou X (2020) All-solid-state passive direct methanol fuel cells with great orientation stability and high energy density based on solid methanol fuels. J Power Sources 450:227669

    Article  CAS  Google Scholar 

  • Łukaszewski M (2016) Electrochemical methods of real surface area determination of noble metal electrodes–an overview. Int J Electrochem Sci 4442–4469.

  • Maillard F, Savinova ER, Simonov PA, Zaikovskii VI, Stimming U (2004) Infrared spectroscopic study of CO adsorption and electro-oxidation on carbon-supported pt nanoparticles: interparticle versus intraparticle heterogeneity. J Phys Chem B 108:17893–17904

    Article  CAS  Google Scholar 

  • Markovic N (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  • Massong H, Wang H, Samjeské G, Baltruschat H (2001) The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of CO. Electrochim Acta 46:701–707

    Article  Google Scholar 

  • Masud J, Alam MT, Miah MR, Okajima T, Ohsaka T (2011a) Enhanced electrooxidation of formic acid at Ta2O5-modified Pt electrode. Electrochem Commun 13:86–89

    Article  CAS  Google Scholar 

  • Masud J, Alam MT, Okajima T, Ohsaka T (2011b) Catalytic electrooxidation of formaldehyde at Ta 2 O 5 -modified Pt electrodes. Chem Lett 40:252–254

    Article  CAS  Google Scholar 

  • Masud J, Alam MT, Awaludin Z, El-Deab MS, Okajima T, Ohsaka T (2012) Electrocatalytic oxidation of methanol at tantalum oxide-modified Pt electrodes. J Power Sources 220:399–404

    Article  CAS  Google Scholar 

  • Maya-Cornejo J, Guerra-Balcázar M, Arjona N, Álvarez-Contreras L, Rodríguez Valadez FJ, Gurrola MP, Ledesma-García J, Arriaga LG (2016) Electrooxidation of crude glycerol as waste from biodiesel in a nanofluidic fuel cell using Cu@Pd/C and Cu@Pt/C. Fuel 183:195–205

    Article  CAS  Google Scholar 

  • Mikkelsen K, Cassidy B, Hofstetter N, Bergquist L, Taylor A, Rider DA (2014) Block copolymer templated synthesis of core-shell PtAu bimetallic nanocatalysts for the methanol oxidation reaction. Chem Mater 26:6928–6940

    Article  CAS  Google Scholar 

  • Moura Souza F, Parreira LS, Hammer P, Batista BL, Santos MC (2018) Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions. J Solid State Electrochem 22:1495–1506

    Article  CAS  Google Scholar 

  • Neto AO, Vasconcelos TRR, Silva RWRVD, LinardiSpinacé MEV (2005) Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process. J Appl Electrochem 35:193–198

    Article  CAS  Google Scholar 

  • Oliveira CP, Lussari NV, Sitta E, Varela H (2012) Oscillatory electro-oxidation of glycerol on platinum. Electrochim Acta 85:674–679

    Article  CAS  Google Scholar 

  • Ong BC, Kamarudin SK, Basri S (2017) Direct liquid fuel cells: a review. Int J Hydrogen Energy 42:10142–10157

    Article  CAS  Google Scholar 

  • Ottoni CA, da Silva SG, De Souza RFB, Neto AO (2016) Glycerol oxidation reaction using PdAu/C electrocatalysts. Ionics (kiel) 22:1167–1175

    Article  CAS  Google Scholar 

  • Paganoto GT, Santos DM, Evangelista TCS, Guimarães MCC, Carneiro MTWD, Ribeiro J (2017) Electrochemical and morphological investigations of Ga addition to Pt electrocatalyst supported on carbon. Sci World J 2017:1–15

    Article  Google Scholar 

  • Palma LM, Almeida TS, Leonello PH, Andrade ARD (2014) Ethanol electrooxidation by plurimetallic Pt-based electrocatalysts prepared by microwave assisted heating. J Electrochem Soc 161:F473–F479

    Article  CAS  Google Scholar 

  • Pan Z, Huang B, An L (2019) Performance of a hybrid direct ethylene glycol fuel cell. Int J Energy Res 43:2583–2591

    Article  CAS  Google Scholar 

  • Papageorgopoulos D, Keijzer M, de Bruijn F (2002) The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for improved CO tolerant PEMFC anodes. Electrochim Acta 48:197–204

    Article  CAS  Google Scholar 

  • Pedicini R, Schiavo B, Rispoli P, Saccà A, Carbone A, Gatto I, Passalacqua E (2014) Progress in polymeric material for hydrogen storage application in middle conditions. Energy 64:607–614

    Article  CAS  Google Scholar 

  • Planes GA, García G, Pastor E (2007) High performance mesoporous Pt electrode for methanol electrooxidation. A DEMS Study Electrochem Commun 9:839–844

    Article  CAS  Google Scholar 

  • Polonský J, Petrushina IM, Christensen E, Bouzek K, Prag CB, Andersen JET, Bjerrum NJ (2012) Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers. Int J Hydrogen Energy 37:2173–2181

    Article  Google Scholar 

  • Puthiyapura VK, Lin W-F, Russell AE, Brett DJL, Hardacre C (2018) Effect of mass transport on the electrochemical oxidation of alcohols over electrodeposited film and carbon-supported Pt electrodes. Top Catal 61:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queiroz MAR, Ribeiro J (2019) Catalysts of PtSn/C modified with Ru and Ta for electrooxidation of ethanol. Catalysts 9:277

    Article  CAS  Google Scholar 

  • Rahsepar M, Pakshir M, Piao Y, Kim H (2012) Synthesis and electrocatalytic performance of high loading active PtRu multiwalled carbon nanotube catalyst for methanol oxidation. Electrochim Acta 71:246–251

    Article  CAS  Google Scholar 

  • Reid O, Saleh FS, Easton EB (2013) Determining electrochemically active surface area in PEM fuel cell electrodes with electrochemical impedance spectroscopy and its application to catalyst durability. Electrochim Acta 114:278–284

    Article  CAS  Google Scholar 

  • Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim Acta 52:6997–7006

    Article  CAS  Google Scholar 

  • Ribeiro J, dos Anjos DM, Léger JM, Hahn F, Olivi P, de Andrade AR, Tremiliosi-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662

    Article  CAS  Google Scholar 

  • Ribeiro J, Tremiliosi-Filho G, Olivi P, de Andrade AR (2011) XAS characterization of the RuO2–Ta2O5 system local (crystal) structure. Mater Chem Phys 125:449–460

    Article  CAS  Google Scholar 

  • Rizo R, Sebastián D, Lázaro MJ, Pastor E (2017) On the design of Pt-Sn efficient catalyst for carbon monoxide and ethanol oxidation in acid and alkaline media. Appl Catal B Environ 200:246–254

    Article  CAS  Google Scholar 

  • Saleh FS, Easton EB (2014) Assessment of the ethanol oxidation activity and durability of Pt catalysts with or without a carbon support using electrochemical impedance spectroscopy. J Power Sources 246:392–401

    Article  CAS  Google Scholar 

  • Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151:A944

    Article  CAS  Google Scholar 

  • Santos DM, Paganoto GT, Queiroz MAR, Guimarães MCC and Ribeiro J (2017a) Influence of support material of PtSnNiGa/C electrocatalysts for ethanol oxidation. Orbital–Electron. J Chem 9.

  • Scibioh MA, Kim S-K, Cho EA, Lim T-H, Hong S-A, Ha HY (2008) Pt-CeO2/C anode catalyst for direct methanol fuel cells. Appl Catal B Environ 84:773–782

    Article  CAS  Google Scholar 

  • Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305

    Article  CAS  Google Scholar 

  • Silva MF, Delmonde MVF, Batista BC, Boscheto E, Varela H, Camara GA (2019) Oscillatory electro-oxidation of ethanol on platinum studied by in situ ATR-SEIRAS. Electrochim Acta 293:166–173

    Article  CAS  Google Scholar 

  • Sitta E, Nascimento MA, Varela H (2010) Complex kinetics, high frequency oscillations and temperature compensation in the electro-oxidation of ethylene glycol on platinum. Phys Chem Phys 12:15195

    Article  CAS  Google Scholar 

  • Soloveichik GL (2014) Liquid fuel cells. Beilstein J Nanotechnol 5:1399–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Souza FM, Böhnstedt P, Pinheiro VS, Oliveira LA, Batista BL, Parreira LS, Antunes RA, Santos MC (2020) Niobium increasing the electrocatalytic activity of palladium for alkaline direct ethanol fuel cell. J Electroanal Chem 858:113824

    Article  CAS  Google Scholar 

  • Souza FM, Pinheiro VS, Gentil TC, Batista BL, Parreira LS, Santos MC (2021) NaNbO3 microcubes decorated with minimum Pd and maximum performance for Alkaline direct ethanol fuel cell applications. J Power Sources 493:229694

    Article  CAS  Google Scholar 

  • Spendelow JS, Lu GQ, Kenis PJA, Wieckowski A (2004) Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. J Electroanal Chem 568:215–224

    Article  CAS  Google Scholar 

  • Sudachom N, Warakulwit C, Prapainainar C, Witoon T, Prapainainar P (2017) One step NaBH 4 reduction of Pt-Ru-Ni catalysts on different types of carbon supports for direct ethanol fuel cells: synthesis and characterization. J Fuel Chem Technol 45:596–607

    Article  CAS  Google Scholar 

  • Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrogen Energy 36:14884–14897

    Article  CAS  Google Scholar 

  • Teran FE, Santos DM, Ribeiro J, Kokoh KB (2012) Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols. Thin Solid Films 520:5846–5850

    Article  CAS  Google Scholar 

  • Ueda A, Yamada Y, Ioroi T, Fujiwara N, Yasuda K, Miyazaki Y, Kobayashi T (2003) Electrochemical oxidation of CO in sulfuric acid solution over Pt and PtRu catalysts modified with TaOx and NbOx. Catal Today 84:223–229

    Article  CAS  Google Scholar 

  • Verma M, Sinha L, Shirage PM (2021) Electrodeposited nanostructured flakes of cobalt, manganese and nickel-based sulfide (CoMnNiS) for electrocatalytic alkaline oxygen evolution reaction (OER). J Mater Sci Mater Electron 32:12292–12307

    Article  CAS  Google Scholar 

  • Wang H, Löffler T, Baltruschat H (2001) Formation of intermediates during methanol oxidation: a quantitative DEMS study. J Appl Electrochem 31:759–765

    Article  CAS  Google Scholar 

  • Wiltshire RJK, King CR, Rose A, Wells PP, Davies H, Hogarth MP, Thompsett D, Theobald B, Mosselmans FW, Roberts M, Russell AE (2009) Effects of composition on structure and activity of PtRu/C catalysts. Phys Chem Phys 11:2305

    Article  CAS  Google Scholar 

  • Wu HW (2016) A review of recent development: transport and performance modeling of PEM fuel cells. Appl Energy 165:81–106

    Article  CAS  Google Scholar 

  • Xin Y, Shen PK (2017) Tantalum carbide doped by fluorine as non-precious metal anodic electrocatalyst superior to Pt/C for glycerol-oxidation. Electrochim Acta 227:267–274

    Article  Google Scholar 

  • Zana A, Speder J, Roefzaad M, Altmann L, Bäumer M, Arenz M (2013) Probing degradation by IL-TEM: the influence of stress test conditions on the degradation mechanism. J Electrochem Soc 160:F608–F615

    Article  CAS  Google Scholar 

  • Zhang X, Li H, Yang J, Lei Y, Wang C, Wang J, Tang Y, Mao Z (2021) Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Adv 11:13316–13328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Wu L, Zhou K, Lang J, Wang G, Tian P, Wang X (2019) Palladium-loaded tantalum oxide modified Pt electrode toward electrochemical oxidation of ethylene glycol. J Electroanal Chem 839:166–172

    Article  CAS  Google Scholar 

  • Zheng L, Xiong L, Liu Q, Han K, Liu W, Li Y, Tao K, Niu L, Yang S, Xia J (2011) Enhanced electrocatalytic activity for the oxidation of liquid fuels on PtSn nanoparticles. Electrochim Acta 56:9860–9867

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding of this study received from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES); Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Universidade Federal do Espírito Santo (UFES) and Vale S.A. We are grateful to Marco C. C. Guimarães for the help with the TEM measurements and also to the Núcleo de Competências em Química do Petróleo (NCQP) by XRD measures.

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES); Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES, grant numbers: 2016/515; 2017/22976-0, 2017/10118-0, 2017/21846-6, and 2020/14100-0); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant numbers: 429727/2018-6, 158772/2019-9); Universidade Federal do Espírito Santo (UFES) and Vale S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josimar Ribeiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Queiroz, M.A.R., Vasconcellos, M.d.S., Ribeiro, M.A. et al. Determination of the electrochemically active surface area by CO and hydrogen of PtSnRuTa/C-based electrocatalysts and their relationship with catalytic activity against alcohol oxidation. Chem. Pap. 76, 4597–4613 (2022). https://doi.org/10.1007/s11696-022-02191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02191-3

Keywords

Navigation