Skip to main content
Log in

A naked-eyes detection method and the influence of solid particles for the ultrasonic cavitation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In the present research, we propose a novel measuring method of ultrasonic cavitation by naked-eye based on the conversion of ferrous ion to ferric ion and chromogenic reaction between ferric and thiocyanate. The effects of different conditions affecting cavitation were investigated. Experiments show that this method can effectively measure the strength of the cavitation field of the system, and is simple to operate, and the results are intuitive, and the cavitation strength can be obtained quickly. The effects of size and concentration of solid particles on ultrasonic cavitation are also studied by using micro-SiO2 as the typical representativeness. It was found that the addition of solid particles could reduce the heterogeneous cavitation threshold. The results provide a basis for the industrialization of ultrasonic chemistry, especially the strengthening of the reaction process of heterogeneous systems under ultrasound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An Y (2011) Formulation of multibubble cavitation. Phys Rev E 83(6):066313

    Article  Google Scholar 

  • Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. Rev Ultrason Sonochem 34:540–560

    Article  CAS  Google Scholar 

  • Copete-Pertuz LS, Serna-Galvis EA, Plácido J, Torres-Palma RA, Mora-Martínez AL (2021) Coupling chemical oxidation processes and Leptosphaerulina sp. myco-remediation to enhance the removal of recalcitrant organic pollutants in aqueous systems. Sci Total Environ 772:145449

    Article  CAS  Google Scholar 

  • Corzo BA, Suárez-Herrera MF (2018) Effect of carbon tetrachloride on the luminol sonochemiluminescence reaction kinetics during multibubble cavitation. Ultrason Sonochem 48:281–286

    Article  CAS  Google Scholar 

  • Esposito C, Mendez MA, Steelant J, Vetrano MR (2021) Spectral and modal analysis of a cavitating flow through an orifice. Exp Therm Fluid Sci 121:110251

    Article  Google Scholar 

  • Fricke H, Hart EJ (1935) The oxidation of Fe++ to Fe+++ by the irradiation with X-rays of solutions of ferrous sulfate in sulfuric acid. J Chem Phys 3(1):60–61

    Article  CAS  Google Scholar 

  • Giesecke T, Hynynen K (2003) Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro. Ultrasound Med Biol 29(9):1359–1365

    Article  Google Scholar 

  • Guo P, Wang S, Zhang L (2019) Selective removal of antimony from refractory gold ores by ultrasound. Hydrometallurgy 190:105161

    Article  CAS  Google Scholar 

  • Harrabi M, Ammar HB, Mbarki K, Naifar I, Yaiche C, Aloulou F, Elleuch B (2018) Ultrasonic power improvement of flumequine degradation effectiveness in aqueous solution via direct and indirect action of mechanical acoustic wave. Ultrason Sonochem 48:517–522

    Article  CAS  Google Scholar 

  • Hart EJ, Henglein A (1985) Free radical and free atom reactions in the sonolysis of aqueous iodide and formate solutions. J Phys Chem 89(20):4342–4347

    Article  CAS  Google Scholar 

  • Holland CK, Apfel RE (1990) Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 88(5):2059–2069

    Article  CAS  Google Scholar 

  • Yao J, Liu W, Zhou L (2018) Formation of bromate in aqueous solution in the presence of br - under ultrasonic irradiation. Chongqing Daxue Xuebao/J. Chongqing University 41(6):84–90

  • Kentish S, Ashokkumar M (2011) The physical and chemical effects of ultrasound. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 1–12

    Google Scholar 

  • Kimura T, Sakamoto T, Leveque JM, Sohmiya H, Ando T (1996) Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem 3(3):S157–S161

    Article  CAS  Google Scholar 

  • Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10(3):149–156

    Article  CAS  Google Scholar 

  • Kumar SS, Balasubrahmanyam A, Shyam SP, Gogate PR, Deshpande VD, Shukla SR et al (2009) Characterization of sonochemical reactor for physicochemical transformations. Ind Eng Chem Res 48(21):9402–9407

    Article  Google Scholar 

  • Liu LY, Wen JJ, Yang Y, Tan W (2013) Influence of particle addition on ultrasonic cavitation field. Chem Ind Eng 30(1):59–66

    Google Scholar 

  • Maleki A (2018) Green oxidation protocol: selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason Sonochem 40:460–464

    Article  CAS  Google Scholar 

  • Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Appl Sonochem 9:885–900

    Google Scholar 

  • Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-al2o3, sio2 and tio2 ultra-fine particles). Netsu Bussei 7(4):227–233

  • Méndez-Arriaga F, Torres-Palma RA, Pétrier C, Esplugas S, Gimenez J, Pulgarin C (2008) Ultrasonic treatment of water contaminated with ibuprofen. Water Res 42(16):4243–4248

    Article  Google Scholar 

  • Merouani S, Ferkous H, Hamdaoui O, Rezgui Y, Guemini M (2015) A method for predicting the number of active bubbles in sonochemical reactors. Ultrason Sonochem 22:51–58

    Article  CAS  Google Scholar 

  • Mirzadeh E, Akhbari K, Phuruangrat A, Costantino F (2017) A survey on the effects of ultrasonic irradiation, reaction time and concentration of initial reagents on formation of kinetically or thermodynamically stable copper (I) metal-organic nanomaterials. Ultrason Sonochem 35:382–388

    Article  CAS  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  CAS  Google Scholar 

  • Nomura H, Koda S, Yasuda K, Kojima Y (1996) Quantification of ultrasonic intensity based on the decomposition reaction of porphyrin. Ultrason Sonochem 3(3):S153–S156

    Article  CAS  Google Scholar 

  • Reza DCS, Jorfi S, Ramezani H, Purfadakari S (2016) Ultrasonically induced ZnO–biosilica nanocomposite for degradation of a textile dye in aqueous phase. Ultrason Sonochem 28:69–78

    Article  Google Scholar 

  • Rong L, Kojima Y, Koda S, Nomura H (2001) Simple quantification of ultrasonic intensity using aqueous solution of phenolphthalein. Ultrason Sonochem 8(1):11–15

    Article  CAS  Google Scholar 

  • Santos HM, Lodeiro C, Capelo-Martínez JL (2009) The Power of Ultrasound. Wiley‐VCH Verlag GmbH & Co. KGaA

  • Šarc A, Stepišnik-Perdih T, Petkovšek M, Dular M (2017) The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrason Sonochem 34:51–59

    Article  Google Scholar 

  • Sato M, Itoh H, Fujii T (2000) Frequency dependence of H2O2 generation from distilled water. Ultrasonics 38(1–8):312–315

    Article  CAS  Google Scholar 

  • Sivakumar M, Pandit AB (2001) Ultrasound enhanced degradation of Rhodamine B: optimization with power density. Ultrason Sonochem 8(3):233–240

    Article  CAS  Google Scholar 

  • Torres RA, Pétrier C, Combet E, Carrier M, Pulgarin C (2008) Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason Sonochem 15(4):605–611

    Article  CAS  Google Scholar 

  • Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T et al (2015) Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method. Food Chem 178(Jul. 1):106–114

    Article  CAS  Google Scholar 

  • Xu X, Cao D, Wang Z, Liu J, Gao J, Sanchuan M, Wang Z (2019) Study on ultrasonic treatment for municipal sludge. Ultrason Sonochem 57:29–37

    Article  CAS  Google Scholar 

  • Yasuda K, Torii T, Yasui K, Iida Y, Tuziuti T, Nakamura M, Asakura Y (2007) Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies. Ultrason Sonochem 14(6):699–704

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. U2002214, U1702252,) and the Natural Science Foundation of Yunnan Province (2019FA022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shixing Wang or Libo Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, S., Liu, C. et al. A naked-eyes detection method and the influence of solid particles for the ultrasonic cavitation. Chem. Pap. 75, 6389–6397 (2021). https://doi.org/10.1007/s11696-021-01805-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01805-6

Keywords

Navigation