Skip to main content
Log in

In vitro sustained release of gallic acid from the size-controlled PEGylated magnetite nanoparticles

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The drug loading efficiency of magnetite nanoparticles (MNPs) can be enhanced by coating with polyethylene glycol (PEG) which is a biocompatible polymer. The PEG-coated MNPs could be the potential candidates for carrying the drug molecules to the targeted sites. In this study, size-controlled MNPs were synthesized and functionalized with PEG of molecular weights 700, 2000 and 5000. The MNPs and PEGylated MNPs (PMNPs) samples were characterized through X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and surface area and pore size measurements by Brunauer, Emmett and Teller (BET) and Barrett–Joyner–Halenda (BJH) methods. The diffraction data showed that MNPs are purely crystalline with face cubic crystal structure, whereas the spherical shape of the particles was confirmed by TEM. The TGA supports thermal stability of nanoparticles which was markedly enhanced by coating with PEG. The BJH data (hysteresis loops) showed that MNPs were mesoporous in nature. After characterization, the PEGylated MNPs were loaded with gallic acid (GA). The spectroscopic evidences regarding the successful PEGylation and loading of GA onto PMNPswere acquired from FTIR spectroscopy. The in vitro sustained drug release efficacy of PMNPs was evaluated via UV–visible spectroscopy. Among all the synthesized samples, P750MNPs-10 showed the highest % drug release i.e., 98% into phosphate buffer saline (PBS) solution of pH 4.4 and 90% in PBS of pH 7.4. The highest % drug release at pH 10 may be attributed to smaller particle size with high surface area. The highest % drug release can also be associated with the weak interactions between P750MNPs-10 and GA through hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

We are grateful to Dr. G. Kociok-Köhn for the XRD and to Dr. Rami for TG/DTA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Waseem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, B., Nawaz, M., Price, G.J. et al. In vitro sustained release of gallic acid from the size-controlled PEGylated magnetite nanoparticles. Chem. Pap. 75, 5339–5352 (2021). https://doi.org/10.1007/s11696-021-01724-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01724-6

Keywords

Navigation