Skip to main content

Advertisement

Log in

Efficient Au nanostructures for NIR-responsive controlled drug delivery systems

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Different photo-thermal agents such as gold nanostructures with various shapes and sizes including nano-rods, nano-cages, nano-shells exhibit tunable optical properties, surface chemistry, resonance frequency and non-toxicity. Furthermore, gold nanoparticles (Au NPs) also utilized for diagnosis purposes and drug carriers for thermo-therapy of biological cells targets and potential bio-medical applications against various cancer treatments. To control complications of conventional cancer therapeutics, Stimuli-assisted drug delivery systems (DDS) together with interior and exterior Stimuli-assisted prompts have received particular interest by the scientific community around the globe. Among both of them, external stimuli-responsive parameters provide more controlled DDSs that circumvent individual discrepancy. Many researchers reported that light-responsive DDSs manifest interesting features because of proficiency and preferable spatiotemporal control. Among them, near-infrared light-responsive DDSs are potential candidates that follow various mechanisms such as photo-thermal effect, two photon absorption, and up converting nano-particles. This review presents an over view of different morphologies of Au nanostructures boosting the efficiency of DDSs by utilizing the phenomenon of surface plasmon resonance by overcoming the major challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afsheen S, Iqbal T, Aftab M, Bashir A, Tehseen A, Khan MY, Ijaz M (2019) Modeling of 1D Au plasmonic grating as efficient gas sensor. Materials Res Express 6(12):126203

    CAS  Google Scholar 

  • Afsheen S, Iqbal T, Akram S, Bashir A, Tehseen A, Rafique M, Ijaz M (2020) Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt Quant Electron 52(2):64

    CAS  Google Scholar 

  • Ahmad R, Fu J, He N, Li S (2016a) Advanced gold nanomaterials for photothermal therapy of cancer. J Nanosci Nanotechnol 16(1):67–80

    CAS  PubMed  Google Scholar 

  • Ahmad R, Fu J, He N, Li S (2016b) Advanced gold nanomaterials for photothermal therapy of cancer. J Nanosci Nanotchnol 16(1):67–80

    CAS  Google Scholar 

  • Ajnai G, Chiu A, Kan T, Cheng C-C, Tsai T-H, Chang J (2014) Trends of gold nanoparticle-based drug delivery system in cancer therapy. Jf Experim Clin Med 6(6):172–178

    CAS  Google Scholar 

  • Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S (2014) Targeted anticancer therapy: overexpressed receptors and nanotechnology. Clin Chim Acta 436:78–92

    CAS  PubMed  Google Scholar 

  • Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, Kurasaki M (2018) A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J Adv Res 9:1–16

    CAS  PubMed  Google Scholar 

  • Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    CAS  PubMed  Google Scholar 

  • Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small 5(6):701–708

    CAS  PubMed  Google Scholar 

  • Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy J (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64(2):190–199

    CAS  PubMed  Google Scholar 

  • Amreddy N, Muralidharan R, Babu A, Mehta M, Johnson EV, Zhao YD, Ramesh R (2015a) Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Nanomed 10:6773

    CAS  Google Scholar 

  • Amreddy N, Muralidharan R, Babu A, Mehta M, Johnson EV, Zhao YD, Ramesh R (2015b) Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int J Med 10:6773

    CAS  Google Scholar 

  • An K, Somorjai GA (2012) Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4(10):1512–1524

    CAS  Google Scholar 

  • Arosio D, Manzoni L, Araldi EM, Scolastico C (2011) Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug Chem 22(4):664–672

    CAS  PubMed  Google Scholar 

  • Arunkumar P, Raju B, Vasantharaja R, Vijayaraghavan S, Kumar BP, Jeganathan K, Premkumar K (2015) Near infra-red laser mediated photothermal and antitumor efficacy of doxorubicin conjugated gold nanorods with reduced cardiotoxicity in swiss albino mice. Nanomed Nanotechnol Biol Med 11(6):1435–1444

    CAS  Google Scholar 

  • Au L, Zheng D, Zhou F, Li Z-Y, Li X, Xia Y (2008) A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2(8):1645–1652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 42(38):4640–4643

    CAS  Google Scholar 

  • Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev 7(2):171–187

    CAS  Google Scholar 

  • Bai Y-Y, Zheng S, Zhang L, Xia K, Gao X, Li Z-H, Ju S (2014) Non-invasively evaluating therapeutic response of nanorod-mediated photothermal therapy on tumor angiogenesis. J Biomed Nanotechnol 10(11):3351–3360

    CAS  PubMed  Google Scholar 

  • Barrow SJ, Wei X, Baldauf JS, Funston AM, Mulvaney P (2012) The surface plasmon modes of self-assembled gold nanocrystals. Nature Commun 3(1):1–9

    Google Scholar 

  • Betzer O, Ankri R, Motiei M, Popovtzer R (2015) Theranostic approach for cancer treatment: multifunctional gold nanorods for optical imaging and photothermal therapy. J Nanomat. https://doi.org/10.1155/2015/646713

    Article  Google Scholar 

  • Bhatnagar S, Venuganti VVK (2015) Cancer targeting: responsive polymers for stimuli-sensitive drug delivery. J Nanosci Nanotechnol 15(3):1925–1945

    CAS  PubMed  Google Scholar 

  • Bikram M, Gobin AM, Whitmire RE, West JL (2007) Temperature-sensitive hydrogels with SiO2–Au nanoshells for controlled drug delivery. J Control Release 123(3):219–227

    CAS  PubMed  Google Scholar 

  • Black KC, Yi J, Rivera JG, Zelasko-Leon DC, Messersmith PBJN (2013) Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine 8(1):17–28

    CAS  PubMed  Google Scholar 

  • Bohren CF, Huffman DR (2008) Absorption and scattering of light by small particles. John Wiley & Sons, New Jersey

    Google Scholar 

  • Carpin LB, Bickford LR, Agollah G, Yu T-K, Schiff R, Li Y (2011) Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat 125(1):27–34

    CAS  PubMed  Google Scholar 

  • Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. J Control Release 121(1–2):3–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charati MB, Lee I, Hribar KC, Burdick JA (2010) Light-sensitive polypeptide hydrogel and nanorod composites. Small 6(15):1608–1611

    CAS  PubMed  Google Scholar 

  • Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li Z-Y, Li XJN (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nanoletters 5(3):473–477

    CAS  Google Scholar 

  • Chen C-C, Lin Y-P, Wang C-W, Tzeng H-C, Wu C-H, Chen Y-C, Wu Y-C (2006) DNA− gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128(11):3709–3715

    CAS  PubMed  Google Scholar 

  • Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7(5):1318–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Soto I, Monroe WT, Alexander JS (2014a) Photothermolysis of lymphatic endothelial cells by gold nanoshell-mediated hyperthermia. J Nanosci Nanotechnol 14(7):5347–5354

    CAS  PubMed  Google Scholar 

  • Chen W, Ayala-Orozco C, Biswal NC, Perez-Torres C, Bartels M, Bardhan R, Deorukhkar A (2014b) Targeting pancreatic cancer with magneto-fluorescent theranostic gold nanoshells. Nanomedicine 9(8):1209–1222

    CAS  PubMed  Google Scholar 

  • Chen H, Liu D, Guo Z (2016) Endogenous stimuli-responsive nanocarriers for drug delivery. Chem Lett 45(3):242–249

    CAS  Google Scholar 

  • Chen J, Sheng Z, Li P, Wu M, Zhang N, Yu X-F, Wang GP (2017) Indocyanine green-loaded gold nanostars for sensitive SERS imaging and subcellular monitoring of photothermal therapy. Nanoscale 9(33):11888–11901

    CAS  PubMed  Google Scholar 

  • Chen H, Gu Z, An H, Chen C, Chen J, Cui R, Chen X (2018) Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 61(12):1503–1552

    CAS  Google Scholar 

  • Cheng M, Wang H, Zhang Z, Li N, Fang X, Xu S (2014) Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS Appl Mater Interfaces 6(3):1569–1575

    CAS  PubMed  Google Scholar 

  • Chhetri S Hirschberg H, Madsen SJ (2014) Photothermal therapy of human glioma spheroids with gold-silica nanoshells and gold nanorods: a comparative study. Paper presented at the Optical Techniques in Neurosurgery, Neurophotonics, and Optogenetics

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    CAS  PubMed  Google Scholar 

  • Cho EC, Glaus C, Chen J, Welch MJ, Xia Y (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16(12):561–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Emoto K, Su L-J, Yang X, Flaig T, Park W (2014) Functionalized gold nanorods for thermal ablation treatment of bladder cancer. J Biomed Nanotechnol 10(7):1267–1276

    CAS  PubMed  Google Scholar 

  • Cho HJ, Chung M, Shim MS (2015) Engineered photo-responsive materials for near-infrared-triggered drug delivery. J Ind Eng Chem 31:15–25

    CAS  Google Scholar 

  • Choi M-R, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, Bashir R (2007) A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765

    CAS  PubMed  Google Scholar 

  • Choi YJ, Kim YJ, Lee JW, Lee Y, Lee S, Lim Y-B, Chung HW (2013) Cytotoxicity and genotoxicity induced by photothermal effects of colloidal gold nanorods. J Nanosci Nanotechnol 13(6):4437–4445

    CAS  PubMed  Google Scholar 

  • Chu C-K, Tu Y-C, Chang Y-W, Chu C-K, Chen S-Y, Chi T-T, Yang C-C (2015) Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation. Nanotechnology 26(7):075102

    CAS  PubMed  Google Scholar 

  • Ciganda R, Irigoyen J, Gregurec D, Hernández R, Moya S, Wang C, Astruc D (2016) Liquid–liquid interfacial electron transfer from ferrocene to gold (III): an ultrasimple and ultrafast gold nanoparticle synthesis in water under ambient conditions. Inorg Chem 55(13):6361–6363

    CAS  PubMed  Google Scholar 

  • Cobley CM, Chen J, Cho EC, Wang LV, Xia Y (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40(1):44–56

    CAS  PubMed  Google Scholar 

  • Coelho SC, Almeida GM, Pereira MC, Santos-Silva F, Coelho MA (2016) Functionalized gold nanoparticles improve afatinib delivery into cancer cells. Expert Opin Drug Deliv 13(1):133–141

    CAS  PubMed  Google Scholar 

  • Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv. https://doi.org/10.1155/2012/751075

    Article  PubMed  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    CAS  PubMed  Google Scholar 

  • Dai L, Liu J, Luo Z, Li M, Cai K (2016) Tumor therapy: targeted drug delivery systems. J Mater Chem B 4(42):6758–6772

    CAS  PubMed  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    CAS  PubMed  Google Scholar 

  • Dembereldorj U, Choi SY, Ganbold EO, Song NW, Kim D, Choo J (2014) Gold nanorod-assembled PEGylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochem Photobiol 90(3):659–666

    CAS  PubMed  Google Scholar 

  • Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ (2009) Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV) warheads. J Am Chem Soc 131(41):14652–14653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dickerson EB, Dreaden EC, Huang X, El-Sayed IH, Chu H, Pushpanketh S, El-Sayed M (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269(1):57–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding C, Tong L, Feng J, Fu J (2016) Recent advances in stimuli-responsive release function drug delivery systems for tumor treatment. Molecules 21(12):1715

    PubMed Central  Google Scholar 

  • Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944

    PubMed  Google Scholar 

  • Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA (2009) Tamoxifen− poly (ethylene glycol)− thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem 20(12):2247–2253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40(7):3391–3404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    CAS  PubMed  Google Scholar 

  • Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282

    CAS  PubMed  Google Scholar 

  • Elbialy N, Mohamed N, Monem AS (2014) Synthesis, characterization and application of gold nanoshells using mesoporous silica core. Microporous Mesoporous Mater 190:197–207

    CAS  Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    CAS  PubMed  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MAJ (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135

    CAS  PubMed  Google Scholar 

  • Faraday M (1857) The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Google Scholar 

  • Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1992) Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J Phys Chem 96(19):7497–7499

    CAS  Google Scholar 

  • Fratoddi I, Venditti I, Cametti C, Russo MV (2015) How toxic are gold nanoparticles? The state-of-the-art. Nano Research 8(6):1771–1799

    CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22

    CAS  Google Scholar 

  • Fu C, Liu T, Li L, Liu H, Chen D, Tang F (2013) The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 34(10):2565–2575

    CAS  PubMed  Google Scholar 

  • Gans R (1915) Form of ultramicroscopic particles of silver. Ann Phys 47(10):270–284

    CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976

    CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA− nanoparticle conjugates. J Am Chem Soc 131(6):2072–2073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49(19):3280–3294

    CAS  Google Scholar 

  • Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett 7(7):1929–1934

    CAS  PubMed  Google Scholar 

  • Goodman AM, Cao Y, Urban C, Neumann O, Ayala-Orozco C, Knight MW, Halas NJ (2014) The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells. ACS Nano 8(4):3222–3231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hainfeld J, Slatkin D, Focella T, Smilowitz H (2006) Gold nanoparticles: a new X-ray contrast agent. British J Radiol 79(939):248–253

    CAS  Google Scholar 

  • Han J, Li J, Jia W, Yao L, Li X, Jiang L, Tian Y (2014) Photothermal therapy of cancer cells using novel hollow gold nanoflowers. Int J Nanomed 9:517

    Google Scholar 

  • Hang C, Zou Y, Zhong Y, Zhong Z, Meng F (2017) NIR and UV-responsive degradable hyaluronic acid nanogels for CD44-targeted and remotely triggered intracellular doxorubicin delivery. Colloids Surf B 158:547–555

    CAS  Google Scholar 

  • Hasan W, Stender CL, Lee MH, Nehl CL, Lee J (2009) Tailoring the structure of nanopyramids for optimal heat generation. Nano Lett 9(4):1555–1558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price R, West JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Nat Acad Sci 100(23):13549–13554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22

    PubMed  Google Scholar 

  • Hosseini M, Farjadian F, Makhlouf ASH (2016) Smart stimuli-responsive nano-sized hosts for drug delivery. Industrial Applications for Intelligent Polymers and Coatings. Springer, Berlin, pp 1–26

    Google Scholar 

  • Hribar KC, Lee MH, Lee D, Burdick JA (2011) Enhanced release of small molecules from near-infrared light responsive polymer− nanorod composites. ACS Nano 5(4):2948–2956

    CAS  PubMed  Google Scholar 

  • Hu Y, Meng L, Niu L, Lu Q (2013) Facile synthesis of superparamagnetic Fe3O4@ polyphosphazene@ Au shells for magnetic resonance imaging and photothermal therapy. ACS Appl Mater Interfaces 5(11):4586–4591

    CAS  PubMed  Google Scholar 

  • Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alexandria J Med 47(1):1–9

    CAS  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    CAS  PubMed  Google Scholar 

  • Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39(9):747–753

    PubMed  Google Scholar 

  • Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217

    PubMed  Google Scholar 

  • Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Zhang H (2011) Synthesis of hexagonal close-packed gold nanostructures. Nature Communic 2(1):1–6

    CAS  Google Scholar 

  • Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Wang PC (2012) Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 6(5):4483–4493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Guo M, Ke H, Zong C, Ren B, Liu G, Zhang HJAM (2015) Rational design and synthesis of γFe2O3@ Au magnetic gold nanoflowers for efficient cancer theranostics. Adv Mater 27(34):5049–5056

    CAS  PubMed  Google Scholar 

  • Iancu C (2013) Photothermal therapy of human cancers (PTT) using gold nanoparticles. Mol Biol Nanomed 1(1):53–60

    Google Scholar 

  • Ijaz M, Aftab M, Afsheen S, Iqbal T (2020a) Novel Au nano-grating for detection of water in various electrolytes. Appl Nanosci 10(11):4029–4036

    CAS  Google Scholar 

  • Ijaz M, Shoukat A, Ayub A, Tabassum H, Naseer H, Tanveer R et al (2020b) Perovskite solar cells: importance, challenges, and plasmonic enhancement. Int J Green Energy 17(15):1022–1035

    CAS  Google Scholar 

  • Iqbal T, Afsheen S (2016a) Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: role of under-and over-milling. Plasmonics 11(5):1247–1256

    CAS  Google Scholar 

  • Iqbal T, Afsheen S (2016b) Plasmonic band gap: role of the slit width in 1D metallic grating on higher refractive index substrate. Plasmonics 11(3):885–893

    CAS  Google Scholar 

  • Iqbal Hafiz MN, Rodriguez MV, Khandia R, Munjal A, Dhama K (2016) Recent trends in nanotechnology-based drugs and formulations for targeted therapeutic delivery. Recent Pat Inflamm Allergy Drug Discov 10(2):86–93

    Google Scholar 

  • Iqbal T, Khalil S, Ijaz M, Riaz KN, Khan MI, Shakil M, Afsheen S (2019a) Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap. Plasmonics 14(3):775–783

    Google Scholar 

  • Iqbal T, Ijaz M, Javaid M, Rafique M, Riaz KN, Tahir MB, Afsheen S (2019b) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1):147–154

    CAS  Google Scholar 

  • Iqbal T, Noureen S, Afsheen S, Khan MY, Ijaz M (2020a) Rectangular and sinusoidal Au-Grating as plasmonic sensor: A comparative study. Opt Mater 99:109530. https://doi.org/10.1016/j.optmat.2019.109530

    Article  CAS  Google Scholar 

  • Iqbal T, Tabassum H, Afsheen S, Ijaz M (2020b) Novel exposed and buried Au plasmonic grating as efficient sensors. Waves in Random and Complex Media. https://doi.org/10.1080/17455030.2020.1828665

    Article  Google Scholar 

  • Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 12:2957

    CAS  Google Scholar 

  • Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    CAS  PubMed  Google Scholar 

  • Jin H, Yang P, Cai J, Wang J, Liu M (2012a) Photothermal effects of folate-conjugated Au nanorods on HepG2 cells. Appl Microbiol Biotechnol 94(5):1199–1208

    CAS  PubMed  Google Scholar 

  • Jin H, Yang P, Cai J, Wang J, Liu M (2012b) Photothermal effects of folate-conjugated Au nanorods on HepG2 cells. Appl Micobiol Nanotech 94(5):1199–1208

    CAS  Google Scholar 

  • Jo H, Youn H, Lee S, Ban C (2014) Ultra-effective photothermal therapy for prostate cancer cells using dual aptamer-modified gold nanostars. J Mater Chem 2(30):4862–4867

    CAS  Google Scholar 

  • Ju E, Li Z, Liu Z, Ren J, Qu X (2014) Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl Mater Interfaces 6(6):4364–4370

    CAS  PubMed  Google Scholar 

  • Kerker M (2013) The scattering of light and other electromagnetic radiation: physical chemistry: a series of monographs, vol 16. Academic press, Cambridge

    Google Scholar 

  • Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer− gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    CAS  PubMed  Google Scholar 

  • Kim M, Lee JH, Nam JM (2019) Plasmonic photothermal nanoparticles for biomedical applications. Adv Sci 6(17):1900471

    Google Scholar 

  • Kirui DK, Khalidov I, Wang Y, Batt CA (2013) Targeted near-IR hybrid magnetic nanoparticles for in vivo cancer therapy and imaging. Nano Med Nanotechnol Biol Med 9(5):702–711

    CAS  Google Scholar 

  • Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22(9):1445

    PubMed Central  Google Scholar 

  • Kreibig U, Vollmer M (2013) Optical properties of metal clusters, vol 25. Springer Science & Business Media, Berlin

    Google Scholar 

  • Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, Liang X-J (2012) Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 33(4):1180–1189

    CAS  PubMed  Google Scholar 

  • Kumar A, Zhang X, Liang X-J (2013) Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv 31(5):593–606

    CAS  PubMed  Google Scholar 

  • Kumar P, Deep A, Kim K-H (2015) Metal organic frameworks for sensing applications. TrAC Trends Analy Chem 73:39–53

    CAS  Google Scholar 

  • Kuppe C, Rusimova KR, Ohnoutek L, Slavov D, Valev VK (2020) “Hot” in plasmonics: temperature-related concepts and applications of metal nanostructures. Adv Optical Mater 8(1):1901166

    CAS  Google Scholar 

  • Kwon HJ, Byeon Y, Jeon HN, Cho SH, Han HD, Shin BCJ (2015) Gold cluster-labeled thermosensitive liposmes enhance triggered drug release in the tumor microenvironment by a photothermal effect. J Control Release 216:132–139

    CAS  PubMed  Google Scholar 

  • Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Account Chem Res 41(12):1842–1851

    CAS  Google Scholar 

  • Lapotko D, Lukianova E, Potapnev M, Aleinikova O, Oraevsky A (2006) Method of laser activated nano-thermolysis for elimination of tumor cells. Cancer Lett 239(1):36–45

    CAS  PubMed  Google Scholar 

  • Lee JK, Samanta D, Nam HG, Zare RN (2018a) Spontaneous formation of gold nanostructures in aqueous microdroplets. Nature Commun 9(1):1–9

    Google Scholar 

  • Lee I-C, Ko J-W, Park S-H, Shin N-R, Shin I-S, Moon C, Kim J-C (2018b) Copper nanoparticles induce early fibrotic changes in the liver via TGF-β/Smad signaling and cause immunosuppressive effects in rats. Nanotoxicology 12(6):637–651

    CAS  PubMed  Google Scholar 

  • Leng W, Pati P, Vikesland PJ (2015) Room temperature seed mediated growth of gold nanoparticles: mechanistic investigations and life cycle assesment. Environm Sci Nano 2(5):440–453

    CAS  Google Scholar 

  • Li H, Tan L-L, Jia P, Li Q-L, Sun Y-L, Zhang J, Yang Y-W (2014) Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chem Sci 5(7):2804–2808

    CAS  Google Scholar 

  • Li Z, Huang H, Tang S, Li Y, Yu X-F, Wang H, Liu C (2016) Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74:144–154

    CAS  PubMed  Google Scholar 

  • Li A, Wang Y, Chen T, Zhao W, Zhang A, Feng S, Liu J (2017) NIR-laser switched ICG/DOX loaded thermo-responsive polymeric capsule for chemo-photothermal targeted therapy. Eur Polymer J 92:51–60

    CAS  Google Scholar 

  • Liao H, Hafner J (2005) Synthesis and applications of gold nanorod bioconjugates. Paper presented at the abstracts of papers of the american chemical society

  • Liao X, Zhang X (2011) Preparation, characterization and cytotoxicity of carbon nanotube–chitosan–phycocyanin complex. Nanotechnology 23(3):035101

    PubMed  Google Scholar 

  • Liao C, Li Y, Tjong SC (2019) Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci 20(2):449

    PubMed Central  Google Scholar 

  • Libutti SK, Paciotti GF, Byrnes AA, Alexander HR, Gannon WE, Walker M, Tamarkin L (2010) Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 16(24):6139–6149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Link S, El-Sayed MA (1999a) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103(21):4212–4217

    CAS  Google Scholar 

  • Link S, El-Sayed MA (1999b) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods: ACS Publications

  • Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453

    CAS  Google Scholar 

  • Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54(1):331–366

    CAS  PubMed  Google Scholar 

  • Link S, El-Sayed M (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109(20):10531–10532

    CAS  Google Scholar 

  • Link S, Mohamed M, El-Sayed M (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103(16):3073–3077

    CAS  Google Scholar 

  • Liu G, Liu W, Dong C-M (2013) UV-and NIR-responsive polymeric nanomedicines for on-demand drug delivery. Polymer Chem 4(12):3431–3443

    CAS  Google Scholar 

  • Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Zhan C, Kohane DS (2017a) Phototriggered drug delivery using inorganic nanomaterials. Bioconjug Chem 28(1):98–104

    CAS  PubMed  Google Scholar 

  • Liu M, Du H, Zhang W, Zhai G (2017b) Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. Mater Sci Eng C 71:1267–1280

    CAS  Google Scholar 

  • Liu Y, Zhang X, Liu Z, Wang L, Luo L, Wang M, Gao D (2017c) Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy. Nanomed Nanotechnol Biol Med 13(6):1891–1900

    CAS  Google Scholar 

  • Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treatment 3(1):33–40

    CAS  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711

    CAS  PubMed  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1170

    CAS  PubMed  Google Scholar 

  • Luk KH, Hulse RM, Phillips TL (1980) Hyperthermia in cancer therapy. West J Med 132(3):179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madkour LJPPIJ (2018) Applications of gold nanoparticles in medicine and therapy. Pharm Pharmacol Int 6(3):157–174

    Google Scholar 

  • Mahmoud NN, Alhusban AA, Ali JI, Al-Bakri AG, Hamed R, Khalil EA (2019) Preferential accumulation of phospholipid-peg and cholesterol-peg decorated gold nanorods into human skin layers and their photothermal-based antibacterial activity. Scientific Rep 9(1):1–15

    CAS  Google Scholar 

  • Martinho N, Damgé C, Reis CP (2011) Recent advances in drug delivery systems. J Biomat Nanobiotechnol 2(05):510

    CAS  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Red 46(12):6387–6392

    CAS  Google Scholar 

  • Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Therapeutics 7(6):1730–1739

    CAS  Google Scholar 

  • Mie G (1908) A contribution to the optics of turbid media, especially colloidal metallic suspensions. Ann Phys 25(4):377–445

    CAS  Google Scholar 

  • Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609

    CAS  PubMed  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003

    CAS  PubMed  Google Scholar 

  • Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications: ACS Publications

  • Murphy CJ, Thompson LB, Chernak DJ, Yang JA, Sivapalan ST, Boulos SP, Sisco PN (2011) Gold nanorod crystal growth: from seed-mediated synthesis to nanoscale sculpting. Curr Opin Colloid Interface Sci 16(2):128–134

    CAS  Google Scholar 

  • Ndokoye P, Zhao Q, Li X, Li T, Tade MO, Wang S (2016) Branch number matters: Promoting catalytic reduction of 4-nitrophenol over gold nanostars by raising the number of branches and coating with mesoporous SiO2. J Colloid Interface Sci 477:1–7

    CAS  PubMed  Google Scholar 

  • Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6(4):683–688

    CAS  PubMed  Google Scholar 

  • Nie L, Chen M, Sun X, Rong P, Zheng N, Chen X (2014) Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 6(3):1271–1276

    CAS  PubMed  Google Scholar 

  • Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    CAS  Google Scholar 

  • Noh MS, Lee S, Kang H, Yang J-K, Lee H, Hwang D, Jun B-H (2015) Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Biomaterials 45:81–92

    CAS  PubMed  Google Scholar 

  • Oldenburg S, Averitt R, Westcott S, Halas N (1998) Nanoengineering of optical resonances. Chem Phys Lett 288(2–4):243–247

    CAS  Google Scholar 

  • O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176

    CAS  PubMed  Google Scholar 

  • Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12(3–4):185–271

    CAS  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Sharma S (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):71

    Google Scholar 

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Google Scholar 

  • Phillips WT, Bao A, Brenner AJ, Goins BA (2014) Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 76:39–59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84(6):4023–4032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad M, Lambe UP, Brar B, Shah I, Manimegalai J, Ranjan K, Khurana SK (2018) Nanotherapeutics: an insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97:1521–1537

    CAS  PubMed  Google Scholar 

  • Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422

    CAS  PubMed  Google Scholar 

  • Qu X, Yao C, Wang J, Li Z, Zhang Z (2012) Anti-CD30-targeted gold nanoparticles for photothermal therapy of L-428 Hodgkin’s cell. Int J Nanomed 7:6095

    CAS  Google Scholar 

  • Rahoui N, Jiang B, Taloub N, Huang YD (2017) Spatio-temporal control strategy of drug delivery systems based nano structures. J Control Release 255:176–201

    CAS  PubMed  Google Scholar 

  • Rasheed T, Bilal M, Li C, Iqbal H (2017) Biomedical potentialities of Taraxacum officinale-based nanoparticles biosynthesized using methanolic leaf extract. Curr Pharm Biotechnol 18(14):1116–1123

    CAS  PubMed  Google Scholar 

  • Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HM (2019) “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol 8(1):1497–1509

    CAS  Google Scholar 

  • Sahu A, Kim M, Ryu J, Son J-G, Lee E, Tae G (2018) Nanographene oxide as a switch for CW/pulsed NIR laser triggered drug release from liposomes. Mater Sci Eng C 82:19–24

    CAS  Google Scholar 

  • Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 2(1):5883

    Google Scholar 

  • Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    CAS  PubMed  Google Scholar 

  • Sershen S, Westcott S, Halas N, West J (2000) Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res 51(3):293–298

    CAS  PubMed  Google Scholar 

  • Siegel R, Miller K, Jemal A (2016) Cancer statistics 2016. CA Cancer J Clin 66:7–30

    PubMed  Google Scholar 

  • Siegel R, Miller K, Jemal A (2017) Cancer Statistics 2017. CA Cancer J Clin 67:7–30

    PubMed  Google Scholar 

  • Skrabalak SE, Au L, Li X, Xia YJ (2007) Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2(9):2182

    CAS  PubMed  Google Scholar 

  • Song HM, Deng L, Khashab NM (2013) Intracellular surface-enhanced Raman scattering (SERS) with thermally stable gold nanoflowers grown from Pt and Pd seeds. Nanoscale 5(10):4321–4329

    CAS  PubMed  Google Scholar 

  • Stern JM, Hsieh J.-T, Park S, Qiu J, Cadeddu J (2006) Gold nanoshell assisted laser ablation of a prostate cancer cell line. Paper presented at the Journal of Endourology

  • Stern JM, Stanfield J, Kabbani W, Hsieh J-T, Cadeddu JAJTJ (2008) Selective prostate cancer thermal ablation with laser activated gold nanoshells. J Urol 179(2):748–753

    PubMed  Google Scholar 

  • Sugiura T, Matsuki D, Okajima J, Komiya A, Mori S, Maruyama S, Kodama TJNR (2015) Photothermal therapy of tumors in lymph nodes using gold nanorods and near-infrared laser light with controlled surface cooling. Nano Res 8(12):3842–3852

    CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179

    CAS  PubMed  Google Scholar 

  • Sutcliffe S (2012) Cancer control: life and death in an unequal world. Curr Oncol 19(1):12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Shen S, Guo J, Chang B, Jiang X, Yang W (2012) Gold nanorods@ mSiO 2 with a smart polymer shell responsive to heat/near-infrared light for chemo-photothermal therapy. J Mater Chem 22(31):16095–16103

    CAS  Google Scholar 

  • Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325

    CAS  Google Scholar 

  • Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Topete A, Alatorre-Meda M, Iglesias P, Villar-Alvarez EM, Barbosa S, Costoya JA, Mosquera VJA (2014) Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 8(3):2725–2738

    CAS  PubMed  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  • Turner M, Golovko VB, Vaughan OP, Abdulkin P, Berenguer-Murcia A, Tikhov MS, Lambert RM (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207):981–983

    CAS  PubMed  Google Scholar 

  • Vempati S, Iqbal T, Afsheen S (2015) Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J Appl Phys 118(4):043103

    Google Scholar 

  • Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN (2016) In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng, C 65:199–204

    CAS  Google Scholar 

  • Vigderman L, Manna P, Zubarev ER (2012) Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed 51(3):636–641

    CAS  Google Scholar 

  • Villalba-Rodriguez AM, Parra-Saldivar R, Ahmed I, Karthik K, Malik YS, Dhama K, Iqbal H (2017) Bio-inspired biomaterials and their drug delivery perspectives-A review. Curr Drug Metab 18(10):893–904

    CAS  PubMed  Google Scholar 

  • Wang Y, Kohane DS (2017) External triggering and triggered targeting strategies for drug delivery. Nature Rev Mater 2(6):1–14

    Google Scholar 

  • Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng J-X (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci 102(44):15752–15756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu G, You M, Song E, Shukoor MI, Zhang K, Altman MB, Chen Y, Zhu Z, Huang CZ, Tan WH (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, You MX, Zhu GZ, Shukoor MI, Chen Z, Zhao Z, Altman MB, Yuan Q, Zhu Z, Chen Y, Huang CZ, Tan W (2013) Photosensitizer–gold nanorod composite for targeted multimodal therapy. Small 9(21):3678–3684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X-W, Gao W, Fan H, Ding D, Lai X-F, Zou Y-X, Tan W (2016a) Simultaneous tracking of drug molecules and carriers using aptamer-functionalized fluorescent superstable gold nanorod–carbon nanocapsules during thermo-chemotherapy. Nanoscale 8(15):7942–7948

    CAS  PubMed  Google Scholar 

  • Wang J, Liu Y, Ma Y, Sun C, Tao W, Wang Y, Wang J (2016b) NIR-Activated Supersensitive Drug Release Using Nanoparticles with a Flow Core. Adv Func Mater 26(41):7516–7525

    CAS  Google Scholar 

  • Wang M, Liu Y, Zhang X, Luo L, Li L, Xing S, Gao D (2017) Gold nanoshell coated thermo-pH dual responsive liposomes for resveratrol delivery and chemo-photothermal synergistic cancer therapy. J Mater Chem B 5(11):2161–2171

    CAS  PubMed  Google Scholar 

  • Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nature Mater 13(8):639–650

    CAS  Google Scholar 

  • Wei Q, Ji J, Shen J (2008) Synthesis of near-infrared responsive gold nanorod/pnipaam core/shell nanohybrids via surface initiated atrp for smart drug delivery. Macromol Rapid Commun 29(8):645–650

    CAS  Google Scholar 

  • Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discovery Today 20(5):595–601

    CAS  PubMed  Google Scholar 

  • Wu X-L, Wen T, Guo H-L, Yang S, Wang X, Xu A-W (2013) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7(4):3589–3597

    CAS  PubMed  Google Scholar 

  • Xu X, Huang Z, Huang Z, Zhang X, He S, Sun X, Zhao C (2017a) Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces 9(24):20361–20375

    CAS  PubMed  Google Scholar 

  • Xu W, Qian J, Hou G, Suo A, Wang Y, Wang J, Yao Y (2017b) Hyaluronic acid-functionalized gold nanorods with pH/NIR dual-responsive drug release for synergetic targeted photothermal chemotherapy of breast cancer. ACS Appl Mater Interfaces 9(42):36533–36547

    CAS  PubMed  Google Scholar 

  • Yang G, Liu J, Wu Y, Feng L, Liu Z (2016) Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord Chem Rev 320:100–117

    Google Scholar 

  • Yang Y, Lin Y, Di D, Zhang X, Wang D, Zhao Q, Wang S (2017) Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy. J Colloid Interface Sci 508:323–331

    CAS  PubMed  Google Scholar 

  • Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Schwartz AG (2009) Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Mater 8(12):935–939

    CAS  Google Scholar 

  • Yuan H, Fales AM, Vo-Dinh TJJ (2012) TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J Am Chem Soc 134(28):11358–11361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Chibli H, Mielke R, Nadeau J (2011) Ultrasmall gold− doxorubicin conjugates rapidly kill apoptosis-resistant cancer cells. Bioconjug Chem 22(2):235–243

    CAS  PubMed  Google Scholar 

  • Zhang N, Chen H, Liu A-Y, Shen J-J, Shah V, Zhang C, Ding YJB (2016) Gold conjugate-based liposomes with hybrid cluster bomb structure for liver cancer therapy. Biomaterials 74:280–291

    CAS  PubMed  Google Scholar 

  • Zhang Z, Xu S, Wang Y, Yu Y, Li F, Zhu H, Guo S (2018a) Near-infrared triggered co-delivery of doxorubicin and quercetin by using gold nanocages with tetradecanol to maximize anti-tumor effects on MCF-7/ADR cells. J Colloid Interface Sci 509:47–57

    CAS  PubMed  Google Scholar 

  • Zhang C-H, Wang Y, Sun Q-Q, Xia L-L, Hu J-J, Cheng K, Gu H (2018b) Copper nanoparticles show obvious in vitro and in vivo reproductive toxicity via ERK mediated signaling pathway in female mice. Int J Biolog Sci 14(13):1834

    CAS  Google Scholar 

  • Zharov VP, Galitovskaya EN, Johnson C, Kelly TJ (2005) Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy. Laser Surg Med 37(3):219–226

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Zafar or Tahir Iqbal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, M., Ijaz, M. & Iqbal, T. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem. Pap. 75, 2277–2293 (2021). https://doi.org/10.1007/s11696-020-01465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01465-y

Keywords

Navigation