Skip to main content
Log in

Microfluidics nanoprecipitation of telmisartan nanoparticles: effect of process and formulation parameters

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A continuous microfluidic nanoprecipitation process has been investigated to prepare nanosized particles of a poorly water-soluble drug telmisartan (TEL), thereby enhancing its solubility and bioavailability. The present work aims to overcome agglomeration of drug particles by controlling the surface forces between the particles using various polymers like Polyvinylpyrrolidone K-30 (PVP K-30), Polyvinylpyrrolidone K-90 (PVP K-90), Poloxamer 188, Poloxamer 407, and hydroxypropyl methylcellulose (HPMC). The effect of process parameters such as solvent-to-antisolvent ratio, polymer-to-drug ratio, microchannel length, and solvent flow rate on drug particle size and polydispersity index (PDI) has been studied. The drug–polymer interaction investigated through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis revealed a significant reduction in peak intensity for Poloxamer 407 with no drug–polymer interaction. Also, the surface morphology of recrystallised TEL nanoparticles examined using field emission scanning electron microscopy (FESEM) showed clear and nearly uniform shaped particles. Poloxamer 407-based formulation of TEL exhibited minimum drug agglomeration with least particle size 369 nm and PDI value 0.049. The minimum particle size was achieved at solvent-to-antisolvent ratio 1:2, 1:1 polymer-to-drug ratio, microchannel length of 60 cm, and solvent flow rate of 30 mL/h. Thus, the microfluidic technique resulted in the production of TEL nanoparticles with narrow size distribution and useful morphological characteristics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APIs:

Active pharmaceutical ingredients

BCS:

Biopharmaceutical Classification System

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared

HPMC:

Hydroxypropyl methylcellulose

PDI:

Polydispersity index

PEO:

Polyethylene oxide

PPO:

Polypropylene oxide

PVP K-30:

Polyvinylpyrrolidone K-30

PVP K-90:

Polyvinylpyrrolidone K-90

TEL:

Telmisartan

XRD:

X-ray diffraction

References

  • Bhise S, Mathure D, Patil MV, Patankar RD (2011) Solubility enhancement of antihypertensive agent by solid dispersion technique. Int J Pharm Life Sci 2:970–995

    CAS  Google Scholar 

  • Chae JS et al (2018) Tablet formulation of a polymeric solid dispersion containing amorphous alkalinized telmisartan. AAPS PharmSciTech 19:2990–2999

    CAS  PubMed  Google Scholar 

  • de Solorzano IO, Uson L, Larrea A, Miana M, Sebastian V, Arruebo M (2016) Continuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: effect of passive mixing. Int J Nanomed 11:3397

    Google Scholar 

  • Dong Z, Rivas DF, Kuhn S (2019) Acoustophoretic focusing effects on particle synthesis and clogging in microreactors. Lab Chip 19:316–327

    CAS  PubMed  Google Scholar 

  • Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A (2010) Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm 67:283–290

    CAS  PubMed  Google Scholar 

  • Feng Q, Sun J, Jiang X (2016) Microfluidics-mediated assembly of functional nanoparticles for cancer-related pharmaceutical applications. Nanoscale 8:12430–12443

    CAS  PubMed  Google Scholar 

  • Frizon F, de Oliveira Eloy J, Donaduzzi CM, Mitsui ML, Marchetti JM (2013) Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol 235:532–539

    CAS  Google Scholar 

  • Hu J, Johnston KP, Williams RO III (2004) Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 30:233–245

    PubMed  Google Scholar 

  • Huang Q-P, Wang J-X, Chen G-Z, Shen Z-G, Chen J-F, Yun J (2008) Micronization of gemfibrozil by reactive precipitation process. Int J Pharm 360:58–64

    CAS  PubMed  Google Scholar 

  • Kakran M, Sahoo N, Li L, Judeh Z, Wang Y, Chong K, Loh L (2010) Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension. Int J Pharm 383:285–292

    CAS  PubMed  Google Scholar 

  • Kakran M, Sahoo NG, Tan I-L, Li L (2012) Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanoparticle Res 14:757

    Google Scholar 

  • Kaufman JJ et al (2012) Structured spheres generated by an in-fibre fluid instability. Nature 487:463–467

    CAS  PubMed  Google Scholar 

  • Khan J, Bashir S, Khan MA, Mohammad MA, Isreb M (2018) Fabrication and characterization of dexibuprofen nanocrystals using microchannel fluidic rector. Drug Des Devel Ther 12:2617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landry V, Riedl B, Blanchet P (2008) Alumina and zirconia acrylate nanocomposites coatings for wood flooring: photocalorimetric characterization. Prog Org Coat 61:76–82

    CAS  Google Scholar 

  • Lee M, Kim S, Ahn C-H, Lee J (2010) Hydrophilic and hydrophobic amino acid copolymers for nano-comminution of poorly soluble drugs. Int J Pharm 384:173–180

    CAS  PubMed  Google Scholar 

  • Li DX et al (2010) Enhanced oral bioavailability of flurbiprofen by combined use of micelle solution and inclusion compound. Arch Pharmacal Res 33:95–101

    CAS  Google Scholar 

  • Malvern I (2004) Zetasizer nano series user manual. Malvern Instruments Ltd, Worcestershire

    Google Scholar 

  • Matteucci ME, Hotze MA, Johnston KP, Williams RO (2006) Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir 22:8951–8959

    CAS  PubMed  Google Scholar 

  • Mello Jd, Mello Ad (2004) FocusMicroscale reactors: nanoscale products. Lab Chip 4:11N–15N

    Google Scholar 

  • Othman R, Vladisavljević GT, Nagy ZK (2015) Preparation of biodegradable polymeric nanoparticles for pharmaceutical applications using glass capillary microfluidics. Chem Eng Sci 137:119–130

    CAS  Google Scholar 

  • Ozaki S, Minamisono T, Yamashita T, Kato T, Kushida I (2012) Supersaturation–nucleation behavior of poorly soluble drugs and its impact on the oral absorption of drugs in thermodynamically high-energy forms. J Pharm Sci 101:214–222

    CAS  PubMed  Google Scholar 

  • Patil P, Khairnar G, Naik J (2015) Preparation and statistical optimization of Losartan Potassium loaded nanoparticles using Box Behnken factorial design: Microreactor precipitation. Chem Eng Res Des 104:98–109

    CAS  Google Scholar 

  • Sangwai M, Vavia P (2013) Amorphous ternary cyclodextrin nanocomposites of telmisartan for oral drug delivery: improved solubility and reduced pharmacokinetic variability. Int J Pharm 453:423–432

    CAS  PubMed  Google Scholar 

  • Sangwal K (2007) Additives and crystallization processes: from fundamentals to applications. John Wiley & Sons, Chichester

    Google Scholar 

  • Sharma C, Desai MA, Patel SR (2018) Ultrasound-assisted anti-solvent crystallization of telmisartan using dimethyl sulfoxide as organic solvent. Cryst Res Technol 53:1800001

    Google Scholar 

  • Sharma C, Desai MA, Patel SR (2019) Effect of surfactants and polymers on morphology and particle size of telmisartan in ultrasound-assisted anti-solvent crystallization. Chem Pap 73:1685–1694

    CAS  Google Scholar 

  • Sharma C, Desai MA, Patel SR (2020) Anti-solvent sonocrystallization for nano-range particle size of telmisartan through Taguchi and Box-Behnken design. Chem Pap 74:323–331

    CAS  Google Scholar 

  • Shrimal P, Jadeja G, Naik J, Patel S (2019a) Continuous microchannel precipitation to enhance the solubility of telmisartan with poloxamer 407 using Box-Behnken design approach. J Drug Deliv Sci Technol 53:101225

    CAS  Google Scholar 

  • Shrimal P, Jadeja G, Patel S (2019b) A review on novel methodologies for drug nanoparticle preparation: microfluidic approach. Chem Eng Res Des

  • Tai S, Zhang W, Zhang J, Luo G, Jia Y, Deng M, Ling Y (2016) Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous Mesoporous Mater 220:148–154

    CAS  Google Scholar 

  • Wang Z, Chen JF, Le Y, Shen ZG, Yun J (2007) Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation. Ind Eng Chem Res 46:4839–4845

    CAS  Google Scholar 

  • Wang JX, Zhang QX, Zhou Y, Shao L, Chen JF (2010) Microfluidic synthesis of amorphous cefuroxime axetil nanoparticles with size-dependent and enhanced dissolution rate. Chem Eng J 162:844–851

    CAS  Google Scholar 

  • Warren DB, Benameur H, Porter CJ, Pouton CW (2010) Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target 18:704–731

    CAS  PubMed  Google Scholar 

  • Wu K-J, Bohan GMDV, Torrente-Murciano L (2017) Synthesis of narrow sized silver nanoparticles in the absence of capping ligands in helical microreactors. React Chem Eng 2:116–128

    CAS  Google Scholar 

  • Zhang H-X, Wang J-X, Shao L, Chen J-F (2010) Microfluidic fabrication of monodispersed pharmaceutical colloidal spheres of atorvastatin calcium with tunable sizes. Ind Eng Chem Res 49:4156–4161

    CAS  Google Scholar 

  • Zhang X, Chen H, Qian F, Cheng Y (2018) Preparation of itraconazole nanoparticles by anti-solvent precipitation method using a cascaded microfluidic device and an ultrasonic spray drier. Chem Eng J 334:2264–2272

    CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to acknowledge Science and Engineering Research Board, Department of Science and Technology, Government of India (sanctioned no. EEQ/2018/001001, dated 23-05-2019) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjaykumar Patel.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author reports there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrimal, P., Jadeja, G. & Patel, S. Microfluidics nanoprecipitation of telmisartan nanoparticles: effect of process and formulation parameters. Chem. Pap. 75, 205–214 (2021). https://doi.org/10.1007/s11696-020-01289-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01289-w

Keywords

Navigation