Skip to main content

Advertisement

Log in

Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are considered as promising magnetic nanoheating agents for diagnostic as well as therapeutic applications due to their biocompatibility and tunability of magnetic properties. These nanoheating agents are commonly synthesized by coprecipitation of two iron precursors, though applying less amount of these chemicals may minimize the toxicity risks for biomedical purposes. The aim of this study is to address this issue by considering the high oxidation vulnerability of ferrous ions to ferric ions to synthesize SPIONs via a single-iron precursor under four varied oxidative conditions. The obtained results implied that the properties of SPIONs can be modified by the variation in the oxidizing conditions. Thereby, the optimal sample was produced as the oxygen/nitrogen flow ratio adjusted to 50% in the synthesis environment. The induction heating efficiency of this optimal sample was investigated under the exposure of varied alternating magnetic field (AMF), which resulted in a remarkable specific absorption rate (SAR) of 168.96 W g−1 while maintaining the temperature medium within the secure hyperthermia range. The cytotoxic effect of the optimal SPIONs sample against human liver carcinoma (HepG2) cells was determined using MTT assay, leading to a considerable decrement in the cell viability. The incorporation of SPIONs under the AMF exposure is, therefore, considered as an effectual mechanism to the tumor intervention.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Chiriac H, Petreus T, Carasevici E, Labusca L, Herea D-D, Danceanu C, Lupu N (2015) In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field. J Magn Magn Mater 380:13–19

    CAS  Google Scholar 

  • Dabbagh A, Hedayatnasab Z, Karimian H, Sarraf M, Yeong CH, Madaah Hosseini HR, Abu Kasim NH, Wong TW, Abdul Rahman N (2019) Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Int J Hyperthermia 36:104–114

    CAS  PubMed  Google Scholar 

  • Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    CAS  Google Scholar 

  • Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 29:790–800

    PubMed  Google Scholar 

  • Gualdani R, Guerrini A, Fantechi E, Tadini-Buoninsegni F, Moncelli MR, Sangregorio C (2019) Superparamagnetic iron oxide nanoparticles (SPIONs) modulate hERG ion channel activity. Nanotoxicology 13:1197–1209

    CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    CAS  PubMed  Google Scholar 

  • Hedayatnasab Z, Abnisa F, Wan Daud WMA (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196

    CAS  Google Scholar 

  • Hedayatnasab Z, Abnisa F, Wan Daud WMA (2018) Investigation properties of superparamagnetic nanoparticles and magnetic field-dependent hyperthermia therapy. IOP Conf Ser Mater Sci Eng 334:012042

    Google Scholar 

  • Hedayatnasab Z, Dabbagh A, Abnisa F, Abu Ksaim NH, Wan Daud WMA (2019) Synthesis of highly stable superparamagnetic iron oxide nanoparticles under mild alkaline reagents and anaerobic condition. Nanosci Nanotechnol Lett 11:985–990

    Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–192

    CAS  Google Scholar 

  • Hergt R, Dutz S, Roder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 20:385214–385225

    PubMed  Google Scholar 

  • Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7:1443–1459

    CAS  PubMed  Google Scholar 

  • Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Adv Colloid Interface Sci 314:274–280

    CAS  Google Scholar 

  • Jabalera Y, Sola-Leyva A, Peigneux A, Vurro F, Iglesias GR, Vilchez-Garcia J, Pérez-Prieto I, Aguilar-Troyano FJ, López-Cara LC, Carrasco-Jiménez MP, Jimenez-Lopez C (2019) Biomimetic magnetic nanocarriers drive choline kinase alpha inhibitor inside cancer cells for combined chemo-hyperthermia therapy. Pharmaceutics 11:408

    CAS  PubMed Central  Google Scholar 

  • Jiang W, Lai K-L, Hu H, Zeng X-B, Lan F, Liu K-X, Wu Y, Gu Z-W (2011) The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J Nanopart Res 13:5135–5245

    CAS  Google Scholar 

  • Kandasamy G, Sudame A, Luthra T, Saini K, Maity D (2018) Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega 3:3991–4005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandasamy G, Soni S, Sushmita K, Veerapu NS, Bose S, Maity D (2019) One-step synthesis of hydrophilic functionalized and cytocompatible superparamagnetic iron oxide nanoparticles (SPIONs) based aqueous ferrofluids for biomedical applications. J Mol Liq 274:653–663

    CAS  Google Scholar 

  • Karunamoorthi R, Suresh Kumar G, Prasad AI, Vatsa RK, Thamizhavel A, Girija EK, Fischman G (2014) Fabrication of a novel biocompatible magnetic biomaterial with hyperthermia potential. J Am Ceram Soc 97:1115–1122

    CAS  Google Scholar 

  • Kingsley MP, Desai PB, Srivastava AK (2015) Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode. J Electroanal Chem 741:71–79

    CAS  Google Scholar 

  • Lahiri BB, Muthukumaran T, Philip J (2016) Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J Magn Magn Mater 407:101–113

    CAS  Google Scholar 

  • Li W, Liu Y, Qian Z, Yang Y (2017) Evaluation of tumor treatment of magnetic nanoparticles driven by extremely low frequency magnetic field. Sci Rep 7:46287–46295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, He Z, Zhao Y, Sun J, Tong G (2018) Modulation of the composition and surface morphology of expanded graphite/Fe/Fe3O4 composites for plasmon resonance-enhanced microwave absorption. J Alloys Compd 765:1218–1227

    CAS  Google Scholar 

  • Lu C, Chiu H, Liu C (2006) Removal of Zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855

    CAS  Google Scholar 

  • Mondal S, Manivasagan P, Bharathiraja S, Santha Moorthy M, Nguyen VT, Kim HH, Nam SY, Lee KD, Oh J (2017) Hydroxyapatite coated iron oxide nanoparticles: a promising nanomaterial for magnetic hyperthermia cancer treatment. Nanomaterials 7:426

    PubMed Central  Google Scholar 

  • Nguyen TK, Duong HTT, Selvanayagam R, Boyer C, Barraud N (2015) Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep 5:18385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Martinez M, de Mejia EG, García-Lara S, Aguilar O, Lopez-Castillo LM, Otero-Pappatheodorou JT (2017) Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. J Funct Foods 34:36–48

    CAS  Google Scholar 

  • Peng X, Wang B, Yang Y, Zhang Y, Liu Y, He Y, Zhang C, Fan H (2019) Liver tumor spheroid reconstitution for testing mitochondrial targeted magnetic hyperthermia treatment. ACS Biomater Sci Eng 5:1635–1644

    CAS  PubMed  Google Scholar 

  • Prileszky TA, Furst EM (2019) Magnetite nanoparticles program the assembly, response, and reconfiguration of structured emulsions. Soft Matter 15:1529–1538

    CAS  PubMed  Google Scholar 

  • Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7:12728–12736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Refait P, Génin JMR (1993) The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one. Corros Sci 34:797–819

    CAS  Google Scholar 

  • Rivas Rojas PC, Tancredi P, Moscoso Londoño O, Knobel M, Socolovsky LM (2018) Tuning dipolar magnetic interactions by controlling individual silica coating of iron oxide nanoparticles. J Magn Magn Mater 451:688–696

    CAS  Google Scholar 

  • Ruiz BG, Roux S, Courtois F, Bonazzi C (2018) Kinetic modelling of ascorbic and dehydroascorbic acids concentrations in a model solution at different temperatures and oxygen contents. Food Res Int 106:901–908

    Google Scholar 

  • Salunkhe AB, Khot VM, Ruso JM, Patil SI (2016) Water dispersible superparamagnetic Cobalt iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 419:533–542

    CAS  Google Scholar 

  • Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera-Gil P (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnol 10:28–28

    CAS  Google Scholar 

  • Sheng-Nan S, Chao W, Zan-Zan Z, Yang-Long H, Venkatraman SS, Zhi-Chuan X (2014) Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chin Phys B 23:037503

    Google Scholar 

  • Singh NP, Singh LP, Singh NR, Srivastava SK (2018) Photoluminescence properties of SrF2:3 Tb@BaF2 nanoparticles and improved hyperthermia temperature achieved by core-shell nanohybrid SrF2:3 Tb@BaF2/Fe3O4 materials. Colloid Polym Sci 296:355–365

    CAS  Google Scholar 

  • Tudisco C, Cambria M, Giuffrida A, Fulvia S, Anfuso D, Lupo G, Caporarello N, Falanga A, Galdiero S, Oliveri V, Satriano C, Condorelli G (2018) Comparison between folic acid and gH625 peptide-based functionalization of Fe3O4 magnetic nanoparticles for enhanced cell internalization. Nanosc Res Lett 13:45–54

    CAS  Google Scholar 

  • Unterweger H, Dézsi L, Matuszak J, Janko C, Poettler M, Jordan J, Bäuerle T, Szebeni J, Fey T, Boccaccini AR, Alexiou C, Cicha I (2018) Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: evaluation of size-dependent imaging properties, storage stability and safety. Int J Nanomed 13:1899–1915

    CAS  Google Scholar 

  • Vaughan L, Glänzel W, Korch C, Capes-Davis A (2017) Widespread use of misidentified cell line KB (HeLa): incorrect attribution and its impact revealed through mining the scientific literature. Cancer Res 77:2784–2788

    CAS  PubMed  Google Scholar 

  • Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65:1882–1884

    CAS  Google Scholar 

  • Yin Y, Hu Z, Du W, Ai F, Ji R, Gardea-Torresdey JL, Guo H (2017) Elevated CO2 levels increase the toxicity of ZnO nanoparticles to goldfish (Carassius auratus) in a water-sediment ecosystem. J Hazard Mater 327:64–70

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the UMRG project of the University of Malaya [RP042A-17AET].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziba Hedayatnasab.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayatnasab, Z., Dabbagh, A., Abnisa, F. et al. Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy. Chem. Pap. 75, 669–679 (2021). https://doi.org/10.1007/s11696-020-01265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01265-4

Keywords

Navigation