Skip to main content
Log in

Kinetic studies on propionic and malic acid reactive extraction using trioctylamine in 1-decanol

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The effectiveness and efficiency of the reactive extraction technique for recovery of propionic acid and malic acid from aqueous solution were investigated. Kinetic studies for the solute (acid)–solvent (trioctylamine dissolved in 1-decanol) system were carried out and mass transfer coefficients experimentally determined. These parameters are necessary for the proper design of an extraction unit. The studies were carried out using dilute solutions of the acids with a concentration range of 0.2–0.6 kmol/m3 and trioctylamine (10%v/v) in 1-decanol as extractant at 303.15 K. The effect of stirring speed, acid and extractant concentration at different time intervals was studied. The kinetic process parameters such as reaction order, mass transfer coefficient and rate constant were evaluated using the experimental data. From the results obtained, the reaction was found to be an instantaneous second-order chemical reaction occurring in the organic diffusion film. The values of the rate constants were found to be 0.430 m3/mol s and 0.332 m3/mol s, respectively, for propionic acid and malic acid, while the mass transfer coefficient, km, was also obtained for propionic acid (9 × 10−6 m/s) and malic acid (3 × 10−6 m/s). These are useful for the design of an extraction unit for carboxylic acid recovery from dilute aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bald A, Kinart Z (2011) Volumetric properties of some aliphatic mono-and dicarboxylic acids in water at 298.15 K. J Solut Chem 40(1):1–16

    Article  CAS  Google Scholar 

  • Bízek V, Horáček J, Koušová M (1993) Amine extraction of citric acid: effect of diluent. Chem Eng Sci 48(8):1447–1457

    Article  Google Scholar 

  • Cárdenas ZJ, Jiménez DM, Martínez F (2017) Preferential solvation of L-arabinose and DL-malic acid in ethanol + water mixtures. Momento 54:14–28

    Article  Google Scholar 

  • Chen J, Sun Q, Lu A, Wu Q (2013) Reactive extraction for separation of KCl and NH4Cl from aqueous solution using tributylamine. Sep Purif Technol 118:58–63. https://doi.org/10.1016/j.seppur.2013.06.026

    Article  CAS  Google Scholar 

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107(6):2411–2502

    Article  CAS  PubMed  Google Scholar 

  • Datta D, Kumar S, Uslu H (2015) Status of the reactive extraction as a method of separation. J Chem 2015:16

    Article  CAS  Google Scholar 

  • Doraiswamy LK, Sharma MM (1984) Heterogeneous reactions: analysis, examples and reactor design, vol 2. Fluid-fluid-solid reactions. Wiley, Hoboken

    Google Scholar 

  • Eda S, Kumar TP, Satyavathi B, Sudhakar P, Parthasarathy R (2016) Recovery of succinic acid by reactive extraction using tri-n-octylamine in 1-decanol: equilibrium optimization using response surface method and kinetic studies. IJCST 1:14

    Google Scholar 

  • Eyal AM, Canari R (1995) pH dependence of carboxylic and mineral acid extraction by amine-based extractants: effects of pKa, amine basicity, and diluent properties. Ind Eng Chem Res 34(5):1789–1798

    Article  CAS  Google Scholar 

  • Gaidhani HK, Wasewar KL, Pangarkar VG (2002) Intensification of enzymatic hydrolysis of penicillin G: Part 1. Equilibria and kinetics of extraction of phenyl acetic acid by Alamine 336. Chem Eng Sci 57(11):1979–1984

    Article  CAS  Google Scholar 

  • Han D, Hong Y, Hong W (2000) Separation characteristics of lactic acid in reactive extraction and stripping. Korean J Chem Eng 17(5):528–533. https://doi.org/10.1007/BF02707161

    Article  CAS  Google Scholar 

  • Hanna GJ, Noble RD (1985) Measurement of liquid-liquid interfacial kinetics. Chem Rev 85(6):583–598

    Article  CAS  Google Scholar 

  • Hong Y, Hong W-H (2000) Extraction of succinic acid with 1-octanol/n-heptane solutions of mixed tertiary amine. Bioprocess Eng 23(5):535–538

    Article  CAS  Google Scholar 

  • Hong YK, Han DH, Hong WH (2002) Water enhanced solubilities of succinic acid in reactive extraction using tertiary amines/alcohols systems. Korean J Chem Eng 19(1):83–86

    Article  CAS  Google Scholar 

  • Keshav A, Wasewar KL, Chand S (2008a) Extraction of propionic acid with tri-n-octyl amine in different diluents. Sep Purif Technol 63(1):179–183. https://doi.org/10.1016/j.seppur.2008.04.012

    Article  CAS  Google Scholar 

  • Keshav A, Wasewar KL, Chand SJCE (2008b) Equilibrium and kinetics of the extraction of propionic acid using tri-n-octylphosphineoxide. Chem Eng Technol Ind Chem Plant Equip Process Eng Biotechnol 31(9):1290–1295

    CAS  Google Scholar 

  • Keshav A, Wasewar KL, Chand S (2009) Recovery of propionic acid from an aqueous stream by reactive extraction: effect of diluents. Desalination 244(1–3):12–23. https://doi.org/10.1016/j.desal.2008.04.032

    Article  CAS  Google Scholar 

  • Kyuchoukov G, Marinova M, Albet J, Molinier J (2004) New method for the extraction of lactic acid by means of a modified extractant (Aliquat 336). Ind Eng Chem Res 43(5):1179–1184

    Article  CAS  Google Scholar 

  • Li Z, Qin W, Dai Y (2002) Extraction behavior of amino sulfonic acid by tertiary and quaternary amines. Ind Eng Chem Res 41(23):5812–5818

    Article  CAS  Google Scholar 

  • Marti ME, Gurkan T, Doraiswamy LK (2011) Equilibrium and kinetic studies on reactive extraction of pyruvic acid with trioctylamine in 1-octanol. Ind Eng Chem Res 50(23):13518–13525. https://doi.org/10.1021/ie200625q

    Article  CAS  Google Scholar 

  • Matsumoto M, Takahashi T, Fukushima K (2003) Synergistic extraction of lactic acid with alkylamine and tri-n-butylphosphate: effects of amines, diluents and temperature. Sep Purif Technol 33(1):89–93

    Article  CAS  Google Scholar 

  • Nikhade BP, Moulijn JA, Pangarkar VG (2004) Extraction of citric acid from aqueous solutions with Alamine 336: equilibrium and kinetics. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 79(10):1155–1161

    CAS  Google Scholar 

  • Pal D, Keshav A (2015) Kinetics of reactive extraction of pyruvic acid using tributylamine dissolved in n-butyl acetate. Int J Chem Reactor Eng 13(1):63–69

    Article  CAS  Google Scholar 

  • Senol A, Lalikoglu M, Bilgin M (2015) Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system: extension of the LSER approach. Fluid Phase Equilib 385:153–165. https://doi.org/10.1016/j.fluid.2014.10.043

    Article  CAS  Google Scholar 

  • Tamada JA, King CJ (1990a) Extraction of carboxylic acids with amine extractants. 2. Chemical interactions and interpretation of data. Ind Eng Chem Res 29(7):1327–1333

    Article  CAS  Google Scholar 

  • Tamada JA, King CJ (1990b) Extraction of carboxylic acids with amine extractants. 3. Effect of temperature, water coextraction, and process considerations. Ind Eng Chem Res 29(7):1333–1338

    Article  CAS  Google Scholar 

  • Wasewar KL, Heesink ABM, Versteeg GF, Pangarkar VG (2002a) Equilibria and kinetics for reactive extraction of lactic acid using Alamine 336 in decanol. J Chem Technol Biotechnol 77(9):1068–1075

    Article  CAS  Google Scholar 

  • Wasewar KL, Heesink ABM, Versteeg GF, Pangarkar VG (2002b) Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. J Biotechnol 97(1):59–68. https://doi.org/10.1016/S0168-1656(02)00057-3

    Article  CAS  PubMed  Google Scholar 

  • Wilke C, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChE J 1(2):264–270

    Article  CAS  Google Scholar 

  • Zelle RM, de Hulster E, van Winden WA, de Waard P, Dijkema C, Winkler AA, van Maris AJ (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74(9):2766–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Inyang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inyang, V., Lokhat, D. Kinetic studies on propionic and malic acid reactive extraction using trioctylamine in 1-decanol. Chem. Pap. 74, 3597–3604 (2020). https://doi.org/10.1007/s11696-020-01194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01194-2

Keywords

Navigation