Skip to main content
Log in

Simultaneous determination of nine dinitroaniline herbicides in environmental samples using a validated vortex-assisted dispersive liquid–liquid microextraction procedure coupled with GC–MS/MS

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A sensitive, rapid, cheap and ecologically safe analytical method has been developed for simultaneous quantification of nine dinitroaniline herbicides (ethalfluralin, trifluralin, benfluralin, profluralin, fluchloralin, isopropalin, pendimethalin, nitralin, prodiamine) in environmental samples, namely surface water, soil and food (tomato) matrices. Vortex-assisted dispersive liquid–liquid microextraction (VA-DLLME) sample preparation and gas chromatography coupled with tandem mass spectrometry (GC–MS/MS) enabled simultaneous quantification of the nine dinitroaniline herbicides in as little as 20 min. The effects of different variables on the DLLME procedure were evaluated, including the type and volume of disperser solvent, the volume of chloroform as the extractant solvent, and extraction time. An optimal analyte protectant mixture (0.5, 1, and 1 mg/mL D-sorbitol, shikimic acid, and δ-gluconolactone, respectively) was identified and employed to improve the detection sensitivity for the tested analytes; this mixture was added to the standards in solvent and used instead of matrix-matched calibration curves during quantification. The selectivity, linearity, precision and accuracy of the proposed methodology were validated: the correlation coefficients were > 0.99 and the limits of detection ranged from 0.3 to 3.3 µg/L for the tested analytes. The limits of quantification (LOQ) ranged from 0.4 to 2 µg/kg in surface water and 2 to 10 µg/kg in soil and tomato samples. Percentage recovery at the LOQ ranged from 64.1 to 87.9%, with inter-day repeatability of ≤ 15.1%. The proposed method was also used to monitor the target analytes in real samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdallah OI, Hanafi A, Ghani SBA, Ghisoni S, Lucini L (2017) Pesticides contamination in Egyptian honey samples. J Verbrauch Lebensm 12:317–327

    CAS  Google Scholar 

  • Abdallah OI, Ahmed NS (2019) Development of a vortex-assisted dispersive liquid-liquid microextraction (VA-DLLME) and LC-MS/MS procedure for simultaneous determination of fipronil and its metabolite fipronil sulfone in tomato fruits. Food Anal Methods 12:2314–2325

    Google Scholar 

  • Abdallah O, El Agamy M, Abdelraheem E, Malhat F (2019) Buprofezin dissipation and safety assessment in open field cabbage and cauliflower using GC/ITMS employing an analyte protectant. Biomed Chromatogr 33(6):e4492. https://doi.org/10.1002/bmc.4492

    Article  PubMed  CAS  Google Scholar 

  • Abete I, Perez-Cornago A, Navas-Carretero S, Bondia-Pons I, Zulet MA, Martinez JA (2013) A regular lycopene enriched tomato sauce consumption influences antioxidant status of healthy young-subjects: a crossover study. J Funct Foods 5:28–35

    CAS  Google Scholar 

  • Ahn KG, Kim GP, Hwang YS, Kang IK, Lee YD, Choung MG (2018) Simultaneous pesticide analysis method for bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor and trifluralin residues in agricultural commodities using GC-ECD/MS. Korean J Environ Agric 37:104–116

    Google Scholar 

  • Albero B, Sanchez-Brunete C, Tadeo JL (2005) Multiresidue determination of pesticides in juice by solid-phase extraction and gas chromatography-mass spectrometry. Talanta 66:917–924. https://doi.org/10.1016/j.talanta.2004.12.046

    Article  PubMed  CAS  Google Scholar 

  • Almeida MB, Madeira TB, Watanabe LS, Melettib PC, Nixdorf SL (2019) Pesticide determination in water samples from a rural area by multi-target method applying liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 30:1657–1666

    CAS  Google Scholar 

  • Amati D, Li Y (1991) Gas chromatographic determination of flumetralin in tobacco. J Chromatogr A 539:237–240. https://doi.org/10.1016/S0021-9673(02)00199-1

    Article  CAS  Google Scholar 

  • Anastassiades M, Scherbaum E (1997) Multi residue method for determination of pesticide residues in citrus fruits by GC-MSD. Part 1. Theoretical principles and development of methods. Dtsch Lebensmitt Rundsch 93:316–327

    CAS  Google Scholar 

  • Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003a) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431

    PubMed  CAS  Google Scholar 

  • Anastassiades M, Maštovská K, Lehotay SJ (2003b) Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. J Chromatogr A 1015:163–184

    PubMed  CAS  Google Scholar 

  • Arora S, Mukherjee I, Trivedi T (2008) Determination of pesticide residue in soil, water and grain from IPM and non-IPM field trials of rice. Bull Environ Contam Toxicol 81:373–376

    PubMed  CAS  Google Scholar 

  • Badr AN, Ahmed MBM, Amer MM, Thang VN, Fouzy AS (2019) Pesticides evaluation in Egyptian fruits and vegetables: a safety assessment study. J Environ Sci Technol 12:81–91

    CAS  Google Scholar 

  • Balinova A, Balinov I (1991) Determination of herbicide residues in soil in the presence of persistent organochlorine insecticides Fresenius’. J Anal Chem 339:409–412

    CAS  Google Scholar 

  • Bermúdez-Couso A, Fernández-Calviño D, Álvarez-Enjo MA, Simal-Gándara J, Nóvoa-Muñoz JC, Arias-Estévez M (2013) Pollution of surface waters by metalaxyl and nitrate from non-point sources. Sci Total Environ 461:282–289

    PubMed  Google Scholar 

  • Bogus ER, Watschke TL, Mumma RO (1990) Utilization of solid-phase extraction and reversed-phase and ion-pair chromatography in the analysis of seven agrochemicals in water. J Agric Food Chem 38:142–144

    CAS  Google Scholar 

  • Boyd-Boland AA, Pawliszyn JB (1995) Solid-phase microextraction of nitrogen-containing herbicides. J Chromatogr A 704:163–172

    CAS  Google Scholar 

  • Bruzzoniti MC, Sarzanini C, Costantino G, Fungi M (2006) Determination of herbicides by solid phase extraction gas chromatography–mass spectrometry in drinking waters. Anal Chim Acta 578:241–249

    PubMed  CAS  Google Scholar 

  • Cabras P, Melis M, Spanedda L, Tuberoso C (1991) High-performance liquid chromatographic determination of dinitroaniline herbicides in soil and water. J Chromatogr A 585:164–167

    CAS  Google Scholar 

  • Cabras P, Angioni A, Melis M, Minelli EV, Pirisi FM (1997) Simplified multiresidue method for the determination of organophosphorus insecticides in olive oil. J Chromatogr A 761:327–331. https://doi.org/10.1016/S0021-9673(96)00840-0

    Article  CAS  Google Scholar 

  • Čajka T, Maštovská K, Lehotay SJ, Hajšlová J (2005) Use of automated direct sample introduction with analyte protectants in the GC–MS analysis of pesticide residues. J Sep Sci 28:1048–1060

    PubMed  Google Scholar 

  • Chen Z et al (2007) Determination of herbicide residues in garlic by GC–MS. Chromatographia 66(11–12):887–891. https://doi.org/10.1365/s10337-007-0425-1

    Article  CAS  Google Scholar 

  • D’Amato A, Semeraro I, Bicchi C (1993) Simultaneous determination of linuron and trifluralin residues in carrots and their pulp by liquid chromatography and gas chromatography. J AOAC Int 76:657–662

    PubMed  Google Scholar 

  • de Erenchun NR, Goicolea MA, de Balugera ZG, Portela MJ, Barrio RJ (1997) Determination of herbicides by reductive amperometric detection in liquid chromatography. J Chromatogr A 763:227–235. https://doi.org/10.1016/S0021-9673(96)00870-9

    Article  Google Scholar 

  • Djurovic R, Gajic-Umiljendic J, Djordjevic T (2015) Determination of atrazine, acetochlor, clomazone, pendimethalin and oxyfluorfen in soil by a solid phase microextraction method. Pesticidi i Fitomedicina 23:265–271. https://doi.org/10.2298/pif0804265d

    Google Scholar 

  • Dömötörová M, Matisová E (2008) Fast gas chromatography for pesticide residues analysis. J Chromatogr A 1207:1–16

    PubMed  Google Scholar 

  • Durand G, Bouvot V, Barceló D (1992) Determination of trace levels of herbicides in estuarine waters by gas and liquid chromatographic techniques. J Chromatogr A 607:319–327

    CAS  Google Scholar 

  • Engebretson J, Hall G, Hengel M, Shibamoto T (2001) Analysis of pendimethalin residues in fruit, nuts, vegetables, grass, and mint by gas chromatography. J Agric Food Chem 49:2198–2206

    PubMed  CAS  Google Scholar 

  • Erney DR, Poole CF (1993) A study of single compound additives to minimize the matrix induced chromatographic response enhancement observed in the gas-chromatography of pesticide-residues. Hrc-J High Res Chrom 16:501–503

    CAS  Google Scholar 

  • Erney DR, Gillespie AM, Gilvydis DM, Poole CF (1993) Explanation of the matrix-induced chromatographic response enhancement of organophosphorus pesticides during open-tubular column gas-chromatography with splitless or hot on-column injection and flame photometric detection. J Chromatogr 638:57–63. https://doi.org/10.1016/0021-9673(93)85007-T

    Article  CAS  Google Scholar 

  • Erney DR, Pawlowski TM, Poole CF (1997) Matrix-induced peak enhancement of pesticides in gas chromatography: is there a solution? Hrc-J High Res Chrom 20:375–378

    CAS  Google Scholar 

  • EU-MRL-Database. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.CurrentMRL&language=EN. Accessed 15 Sep 2019

  • FAOSTAT (2017) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QC. Accessed 9 Jan 2020

  • Farhat-un-Nisa S, Razia K, Behisht A, Mian M (2012) Determination of dinitroaniline herbicides in food samples and commercial formulations using spectrophotometric method. Pak J Weed Sci Res 18(3):265–275

    Google Scholar 

  • Fenoll J, Hellín P, Martínez CM, Miguel M, Flores P (2007) Multiresidue method for analysis of pesticides in pepper and tomato by gas chromatography with nitrogen-phosphorus detection. Food Chem 105:711–719

    CAS  Google Scholar 

  • Ferrer I, Thurman EM (2007) Multi-residue method for the analysis of 101 pesticides and their degradates in food and water samples by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A 1175:24–37

    PubMed  CAS  Google Scholar 

  • García-Valcárcel AI, Sánchez-Brunete C, Martínez L, Tadeo JL (1996) Determination of dinitroaniline herbicides in environmental samples by gas chromatography. J Chromatogr A 719:113–119. https://doi.org/10.1016/0021-9673(95)00375-4

    Article  Google Scholar 

  • George J, Shukla Y (2011) Pesticides and cancer: insights into toxicoproteomic-based findings. J Proteom 74:2713–2722

    CAS  Google Scholar 

  • González-Rodríguez RM, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2008) Determination of 23 pesticide residues in leafy vegetables using gas chromatography–ion trap mass spectrometry and analyte protectants. J Chromatogr A 1196:100–109

    PubMed  Google Scholar 

  • Guan F, Watanabe K, Ishii A, Seno H, Kumazawa T, Hattori H, Suzuki O (1998) Headspace solid-phase microextraction and gas chromatographic determination of dinitroaniline herbicides in human blood, urine and environmental water. J Chromatogr B Biomed Sci Appl 714:205–213

    PubMed  Google Scholar 

  • Haib J, Hofer I, Renaud JM (2003) Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry. J Chromatogr A 1020:173–187

    PubMed  CAS  Google Scholar 

  • Hajšlová J, Zrostlı́ková J (2003) Matrix effects in (ultra) trace analysis of pesticide residues in food and biotic matrices. J Chromatogr A 1000:181–197

    PubMed  Google Scholar 

  • Hamilton D et al (2003) Regulatory limits for pesticide residues in water (IUPAC technical report). Pure Appl Chem 75:1123–1155

    CAS  Google Scholar 

  • Hartley D, Kidd H (1987) The Agrochemical Handbook, 2nd edn. Royal Society of Chemistry, Nottingham England

    Google Scholar 

  • Hegedűs G, Bélai I, Székács A (2000) Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin. Anal Chim Acta 421:121–133. https://doi.org/10.1016/S0003-2670(00)01045-X

    Article  Google Scholar 

  • Helling CS (1976) Dinitroaniline herbicides in soils. J Environ Qual 5:1–14

    CAS  Google Scholar 

  • Hoh E, Mastovska K (2008) Large volume injection techniques in capillary gas chromatography. J Chromatogr A 1186:2–15

    PubMed  CAS  Google Scholar 

  • Kaur N, Bhullar MS (2015) Harvest time residues of pendimethalin and oxyfluorfen in vegetables and soil in sugarcane-based intercropping systems. Environ Monit Assess 187:221

    PubMed  Google Scholar 

  • Krause A, Niemczyk H (1992) Simultaneous gas-liquid chromatographic analysis of trifluralin and benfluralin residues in turfgrass thatch and soil by solid-phase extraction technique. J Environ Sci Health B 27:39–51

    Google Scholar 

  • Lari SZ, Khan NA, Gandhi KN, Meshram TS, Thacker NP (2014) Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J Environ Health Sci Eng 12:11

    PubMed  PubMed Central  Google Scholar 

  • Leoni V, Cremisini C, Casuccio A, Gullotti A (1991) Separation of pesticides, related compounds, polychlorobiphenyls and other pollutants into four groups by silica-gel microcolumn chromatography (application to surface water analysis). Pest Sci 31(2):209–220

    CAS  Google Scholar 

  • Liu H et al (2004) Simultaneous residue measurement of pendimethalin, isopropalin, and butralin in tobacco using high-performance liquid chromatography with ultraviolet detection and electrospray ionization/mass spectrometric identification. J Agric Food Chem 52:6912–6915

    PubMed  CAS  Google Scholar 

  • Marquis LY, Shimabukuro RH, Stolzenberg GE, Feil VJ, Zaylskie RG (1979) Metabolism and selectivity of fluchloralin in soybean roots. J Agric Food Chem 27:1148–1156

    PubMed  CAS  Google Scholar 

  • Maštovská K, Hajšlová J, Lehotay SJ (2004) Ruggedness and other performance characteristics of low-pressure gas chromatography–mass spectrometry for the fast analysis of multiple pesticide residues in food crops. J Chromatogr A 1054:335–349

    PubMed  Google Scholar 

  • Maštovská K, Lehotay SJ, Anastassiades M (2005) Combination of analyte protectants to overcome matrix effects in routine GC analysis of pesticide residues in food matrixes. Anal Chem 77:8129–8137

    PubMed  Google Scholar 

  • Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

    PubMed  CAS  Google Scholar 

  • Özhan G, Özden S, Alpertunga B (2005) Determination of commonly used herbicides in surface water using solid-phase extraction and dual-column HPLC-DAD. J Environ Sci Health B 40:827–840

    PubMed  Google Scholar 

  • Pal A, He Y, Jekel M, Reinhard M, Gin KY-H (2014) Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle. Environ Int 71:46–62

    PubMed  CAS  Google Scholar 

  • Pan XL et al (2015) Simultaneous determination of chlorantraniliprole and cyantraniliprole in fruits, vegetables and cereals using ultra-high-performance liquid chromatography-tandem mass spectrometry with the isotope-labelled internal standard method. Anal Bioanal Chem 407:4111–4120

    PubMed  CAS  Google Scholar 

  • Papadopoulou-Mourkidou E, Karpouzas D, Patsias J, Kotopoulou A, Milothridou A, Kintzikoglou K, Vlachou P (2004) The potential of pesticides to contaminate the groundwater resources of the Axios river basin in Macedonia, Northern Greece Part I. Monitoring study in the north part of the basin. Sci Total Environ 321:127–146

    PubMed  CAS  Google Scholar 

  • Polese L, Dores EFGDC, Jardim EFG, Navickiene S, Ribeiro ML (2002) Determination of herbicides residues in soil by small scale extraction. Eclética Química 27:1–2

    Google Scholar 

  • Pressley TA, Longbottom JE (1982) The determination of dinitroaniline pesticides in industrial and municipal wastewater: method 627. EPA Report 600/4- 82-009

  • Przybylski C, Hommet F (2008) Evaluation of some parameters affecting troublesome pesticide analysis in gas chromatography–ion-trap mass spectrometry. J Chromatogr A 1201:78–90

    PubMed  CAS  Google Scholar 

  • Rezaee M, Assadi Y, Hosseini M-RM, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116:1–9

    PubMed  CAS  Google Scholar 

  • Sanchez-Brunete C, Martinez L, Tadeo J (1994) Determination of corn herbicides by GC-MS and GC-NPD in environmental samples. J Agric Food Chem 42:2210–2214

    CAS  Google Scholar 

  • SANTE/11813/2017 Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. https://eceuropaeu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf. Accessed 15 Sep 2019

  • Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Google Scholar 

  • Shah J, Jan MR, Ara B (2011) Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method. Environ Monit Assess 175:103–108

    PubMed  CAS  Google Scholar 

  • Shen X, Su Q, Zhu X, Gao Y (2007) Determination of pesticide residues in soil by modified matrix solid-phase dispersion and gas chromatography. Ann Chim 97:647–653

    PubMed  CAS  Google Scholar 

  • Tanabe A, Mitobe H, Kawata K, Sakai M (1996) Monitoring of herbicides in river water by gas chromatography-mass spectrometry and solid-phase extraction. J Chromatogr A 754:159–168

    CAS  Google Scholar 

  • Temur C, Tiryaki O, Uzun O, Basaran M (2012) Adaptation and validation of QuEChERS method for the analysis of trifluralin in wind-eroded soil. J Environ Sci Health B 47:842–850

    CAS  Google Scholar 

  • Topuz S, Özhan G, Alpertunga B (2005) Simultaneous determination of various pesticides in fruit juices by HPLC-DAD. Food Control 16:87–92

    CAS  Google Scholar 

  • Tutarli A, Cici M, Celik S (1995) Determination of trifluralin and chloridazon residues in agricultural lands in Elazig Province. Environ Technol 16:995–1000

    CAS  Google Scholar 

  • Ukpebor J, Ukpebor E (2016) Application of QuEChERS method for multi-residue pesticides determination in lettuce and apple using gas chromatography–mass spectrometry. Niger J Technol. 35:544–549

    Google Scholar 

  • Vitali P, Venturini E, Bonora C, Calori R, Raffaelli R (1994) Determination of triazines and dinitroanilines in waters by high-performance liquid chromatography after solid-phase extraction. J Chromatogr A 660:219–222

    CAS  Google Scholar 

  • Wen X, Fei J, Chen X, Yi L, Ge F, Huang M (2008) Electrochemical analysis of trifluralin using a nanostructuring electrode with multi-walled carbon nanotubes. Environ Pollut 156:1015–1020

    PubMed  CAS  Google Scholar 

  • West SD, Weston JH, Day EW Jr (1988) Gas chromatographic determination of residue levels of the herbicides trifluralin, benefin, ethalfluralin, and isopropalin in soil with confirmation by mass selective detection. J AOAC Int 71:1082–1085

    CAS  Google Scholar 

  • WHO (1987) Second consultation on herbicides in drinking-water Rome, 13–18 July 1987 Document ICP/CWS 012A(S)

  • Zhang B, Pan X, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75:1055–1060

    PubMed  CAS  Google Scholar 

  • Zimdahl R, Gwynn S (1977) Soil degradation of three dinitroanilines. Weed Sci 25:247–251

    CAS  Google Scholar 

  • Zrostlıkova J, Hajšlová J, Poustka J, Begany P (2002) Alternative calibration approaches to compensate the effect of co-extracted matrix components in liquid chromatography–electrospray ionisation tandem mass spectrometry analysis of pesticide residues in plant materials. J Chromatogr A 973:13–26

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OIA contributed to the conception and design of the experiment, analysis of samples and data analysis, did the collection of real samples and writing the manuscript.

Corresponding author

Correspondence to Osama Ibrahim Abdallah.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, O.I. Simultaneous determination of nine dinitroaniline herbicides in environmental samples using a validated vortex-assisted dispersive liquid–liquid microextraction procedure coupled with GC–MS/MS. Chem. Pap. 74, 2311–2326 (2020). https://doi.org/10.1007/s11696-020-01075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01075-8

Keywords

Navigation