Skip to main content

Advertisement

Log in

Evaluation of the oxidation kinetics and stability of soybean oil supplemented with ethanolic extract of Nepeta (Nepeta binaludensis Jamzad) as compared to butylated hydroxytoluene

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The oxidative stability and oxidation kinetics of pure soybean oil (PSO) supplemented with 0.5–6% of pulse electric field ethanolic extract (PEFx) of Nepeta (Nepata binaludensis Jamzad) or 100 ppm of butylated hydroxytoluene (BHT) were evaluated at 100–120 °C. The oxidative stability of PSO decreased with increasing temperature and improved significantly (p < 0.05) by added PEFx at the levels 0.5% and higher. The reaction rate constants increased linearly with increasing temperature from 100 to 120 °C. The temperature coefficients of PSO with added PEFx at different concentrations ranged from − 3.37 × 10−2 to − 4.79 × 10−2 °C as compared with -2.79 × 10−2 °C with BHT. The values of activation energies, temperature acceleration factors, activation enthalpies and entropies for oxidative stability of the PSO with added PEFx at different concentrations ranged from 92 to 100 kJ/mol, from 2.13 to 2.27, from 88.8 to 96.9 J/mol K and − 71.9 to − 91.1 kJ/mol, respectively, as compared with 66.5 kJ/mol and − 162 kJ/mol with added BHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alimentarius C (1999) Codex standard for named vegetable oils. Codex Stan 210:1–13

    Google Scholar 

  • AOCS (1993) Official methods and recommended practices of the American Oil Chemists’ Society, vol 29. AOCS Press, Champaign, pp 573–577

    Google Scholar 

  • Arab-Tehrany E, Jacquot M, Gaiani C, Imran M, Desobry S, Linder M (2012) Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty acids. Trends Food Sci Technol 25(1):24–33

    Article  CAS  Google Scholar 

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99(1):191–203

    Article  CAS  Google Scholar 

  • Belhaj N, Arab-Tehrany E, Linder M (2010) Oxidative kinetics of salmon oil in bulk and in nanoemulsion stabilized by marine lecithin. Process Biochem 45(2):187–195

    Article  CAS  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239(1):70–76

    Article  CAS  Google Scholar 

  • Boussetta N, Soichi E, Lanoiselle JL, Vorobiev E (2014) Valorization of oilseed residues: extraction of polyphenols from flaxseed hulls by pulsed electric fields. Ind Crops Prod 52:347–353

    Article  CAS  Google Scholar 

  • Burits M, Bucar F (2000) Antioxidant activity of Nigella sativa essential oil. Phytother Res 14(5):323–328

    Article  CAS  PubMed  Google Scholar 

  • Cho HY (1997) Reaction mechanisms and kinetics of antioxidant using arrhenius equation in soybean oil oxdation. Prev Nutr Food Sci 2(1):6–10

    CAS  Google Scholar 

  • Chung YC, Chien CT, Teng KY, Chou ST (2006) Antioxidative and mutagenic properties of Zanthoxylum ailanthoides Sieb and zucc. Food Chem 97(3):418–425

    Article  CAS  Google Scholar 

  • Domingos AK, Saad EB, Vechiatto WW, Wilhelm HM, Ramos LP (2007) The influence of BHA, BHT and TBHQ on the oxidation stability of soybean oil ethyl esters (biodiesel). J Braz Chem Soc 18(2):416–423

    Article  CAS  Google Scholar 

  • Farhoosh R, Hoseini-Yazdi SZ (2014) Evolution of oxidative values during kinetic studies on olive oil oxidation in the Rancimat test. J Am Oil Chem Soc 91(2):281–293

    Article  CAS  Google Scholar 

  • Farhoosh R, Niazmand R, Rezaei M, Sarabi M (2008) Kinetic parameter determination of vegetable oil oxidation under Rancimat test conditions. Eur J Lipid Sci Technol 110(6):587–592

    Article  CAS  Google Scholar 

  • Farhoosh R, Tavassoli-Kafrani MH, Sharif A (2011) Antioxidant activity of the fractions separated from the unsaponifiable matter of bene hull oil. Food Chem 126(2):583–589

    Article  CAS  Google Scholar 

  • Formisano C, Rigano D, Senatore F (2011) Chemical constituents and biological activities of Nepeta species. Chem Biodivers 8(10):1783–1818

    Article  CAS  PubMed  Google Scholar 

  • Frankel E (1998) Frying fats. Lipid oxidation. The Oily Press, Dundee, pp 227–248

    Google Scholar 

  • Gökbulut A (2015) Validated RP-HPLC method for quantification of phenolic compounds in methanol extracts of aerial parts and roots of Thymus sipyleus and evaluation of antioxidant potential. Trop J Pharm Res 14(10):1871–1877

    Article  CAS  Google Scholar 

  • Gramza A, Khokhar S, Yoko S, Gliszczynska-Swiglo A, Hes M, Korczak J (2006) Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur J Lipid Sci Technol 108(4):351–362

    Article  CAS  Google Scholar 

  • Guan Z, Li S, Lin Z, Yang R, Zhao Y, Liu J, Yang S, Chen A (2014) Identification and quantitation of phenolic compounds from the seed and Pomace of Perilla frutescens using HPLC/PDA and HPLC–ESI/QTOF/MS/MS. Phytochem Anal 25(6):508–513

    Article  CAS  PubMed  Google Scholar 

  • Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W (2015) Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Design, Dev Ther 9:2695

    CAS  Google Scholar 

  • Janicsák G, Máthé I, Miklóssy-Vári V, Blunden G (1999) Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem Syst Ecol 27(7):733–738

    Article  Google Scholar 

  • Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47(10):3954–3962

    Article  CAS  PubMed  Google Scholar 

  • Križman M, Baričevič D, Prošek M (2007) Determination of phenolic compounds in fennel by HPLC and HPLC–MS using a monolithic reversed-phase column. J Pharm Biomed Anal 43(2):481–485

    Article  CAS  PubMed  Google Scholar 

  • Lampi A-M, Kataja L, Kamal-Eldin A, Vieno P (1999) Antioxidant activities of α-and γ-tocopherols in the oxidation of rapeseed oil triacylglycerols. J Am Oil Chem Soc 76(6):749–755

    Article  CAS  Google Scholar 

  • Mazumder A, Neamati N, Sunder S, Schulz J, Pertz H, Eich E, Pommier Y (1997) Curcumin analogs with altered potencies against HIV-1 integrase as probes for biochemical mechanisms of drug action. J Med Chem 40(19):3057–3063

    Article  CAS  PubMed  Google Scholar 

  • Mendez E, Sanhueza J, Speisky H, Valenzuela A (1996) Validation of the Rancimat test for the assessment of the relative stability of fish oils. J Am Oil Chem Soc 73(8):1033–1037

    Article  CAS  Google Scholar 

  • Nadjafi F, Koocheki A, Moghaddam PR, Honermeier B (2012) First experiments on cultivation of Nepeta binaludensis Jamzad-an example of domestication of a highly endangered medicinal plant of Iran. Zeitschrift fur Arznei-und Gewurzpflanzen 17:64–71

    Google Scholar 

  • Nakatani N, Tachibana Y, Kikuzaki H (2001) Establishment of a model substrate oil for antioxidant activity assessment by oil stability index method. J Am Oil Chem Soc 78(1):19–23

    Article  CAS  Google Scholar 

  • Osawa T (1994) Novel natural antioxidants for utilization in food and biological systems. Post harvest biochemistry of plant food-materials in the tropics. Japan Scientific Societies Press, Tokyo, pp 241–251

    Google Scholar 

  • Pedro AC, Maurer JBB, Zawadzki-Baggio SF, Ávila S, Maciel GM, Haminiuk CWI (2018) Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind Crops Prod 112:90–97

    Article  CAS  Google Scholar 

  • Prior R (2004) Absorption and metabolism of anthocyanins: potential health effects. CRC Press, Boca Raton, pp 1–19

    Google Scholar 

  • Prior RL, Cao G (2001) In vivo total antioxidant capacity: comparison of different analytical methods. In: Pryor WA (eds) Bio-assays for oxidative stress status. Elsevier, Amsterdam, pp 39–47

    Chapter  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Shantha NC, Decker EA (1994) Rapid, sensitive, iron-based spectrophotometric methods for determination of perorlride values of food lipids. Food Compos Addit 77(2):421–424

    CAS  Google Scholar 

  • Siger A, Nogala-kalucka M, Lampart-Szczapa E (2008) The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J Food Lipids 15(2):137–149

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Tan C, Man YC, Selamat J, Yusoff M (2001) Application of Arrhenius kinetics to evaluate oxidative stability in vegetable oils by isothermal differential scanning calorimetry. J Am Oil Chem Soc 78(11):1133

    Article  CAS  Google Scholar 

  • Tayarani-Najaran Z, Akaberi M, Vatani M, Emami SA (2016) Evaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells. Iran J Basic Med Sci 19(6):662

    PubMed  PubMed Central  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49(11):5165–5170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvin Sharayei.

Ethics declarations

Conflict of interest

No conflicts of interest exist in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi Mahalleh, A., Sharayei, P., Azarpazhooh, E. et al. Evaluation of the oxidation kinetics and stability of soybean oil supplemented with ethanolic extract of Nepeta (Nepeta binaludensis Jamzad) as compared to butylated hydroxytoluene. Chem. Pap. 73, 2231–2239 (2019). https://doi.org/10.1007/s11696-019-00772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00772-3

Keywords

Navigation