Skip to main content
Log in

The hydrothermal stability of the alkali-treated ZSM-5 and it’s catalytic performance in catalytic cracking of VGO

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

To enhance the heavy oil cracking ability of ZSM-5, desilication by alkali has been adopted in this study. The results showed that desilication by NaOH, NaOH/Al(NO3)3, NaOH/(NH4)3PO4 solutions all can induce some mesoporous structure to ZSM-5 zeolite. Among them, the sample ZSM-5/NaOH/(NH4)3PO4-F showed the highest mesoporous surface area. The hydrothermal stability of the desilicated ZSM-5 samples was also measured. The NaOH-modified ZSM-5 sample exhibited worse hydrothermal stability than the parent ZSM-5, while NaOH/(NH4)3PO4 modified ZSM-5 sample maintained the higher relative crystallinity and more acidic sites than the parent ZSM-5 after the hydrothermal treatment. The micro-activity tests showed that the NaOH/Al(NO3)3, NaOH/(NH4)3PO4-modified ZSM-5 samples exhibited higher catalytic activity than the parent ZSM-5 sample and NaOH-modified ZSM-5 sample in catalytic cracking of vacuum gas oil (VGO). Especially, for the sample ZSM-5/NaOH/(NH4)3PO4, the conversion of VGO increased from 78.91 to 85.13%, and the yield of propylene increased from 15.01 to 18.83% compared to the unmodified ZSM-5 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmin Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Chen, Y. & Li, C. The hydrothermal stability of the alkali-treated ZSM-5 and it’s catalytic performance in catalytic cracking of VGO. Chem. Pap. 73, 215–220 (2019). https://doi.org/10.1007/s11696-018-0572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-018-0572-x

Keywords

Navigation