Skip to main content
Log in

QSRR prediction of gas chromatography retention indices of essential oil components

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A comprehensive and largest (to the best of our knowledge) database of 791 essential oil components (EOCs) with corresponding gas chromatographic retention properties has been built. With this data set, Quantitative structure–retention relationship (QSRR) models for the prediction of the Kováts retention indices (RIs) on the non-polar DB-5 stationary phase have been built using the DRAGON molecular descriptors and the regression methods: multiple linear regression (MLR) and artificial neural networks (ANN). The obtained models demonstrate good performance, evidenced by the satisfactory statistical parameters for the best MLR (R 2 = 96.75% and \(Q_{\text{ext}}^{2}\) = 98.0%) and ANN (R 2 = 97.18% and \(Q_{\text{ext}}^{2}\) = 98.4%) models, respectively. In addition, the built models provide information on the factors that influence the retention of EOCs over the DB-5 stationary phase. Comparisons of the statistical parameters for the QSRR models in the present study with those reported in the literature demonstrate comparable to superior performance for the former. The obtained models constitute valuable tools for the prediction of RIs for new EOCs whose experimental data are undetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo-Martínez J, Escalona-Arranz JC, Villar-Rojas A, Téllez-Palmero F, Pérez-Rosés R, González L et al (2006) Quantitative study of the structure–retention index relationship in the imine family. J Chromatogr A 1102:238–244. doi:10.1016/j.chroma.2005.10.019

    Article  Google Scholar 

  • Adams RP (2001) Identification of essential oil components by gas chromatography/quadruple mass spectrometry, 3rd edn. Allured Publishing Corp, Illinois, p 456

    Google Scholar 

  • Albaugh DR, Hall LM, Hill DW, Kertesz TM, Parham M, Hall LH (2009) Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices. J Chem Inform Model 49:788–799. doi:10.1021/ci9000162

    Article  CAS  Google Scholar 

  • Alvarez R (1995) Estadística Multivariante y no Paramétrica con SPSS: aplicación a las ciencias de la salud. Díaz de Santos edn, Madrid

    Google Scholar 

  • Anker LS, Jurs PC, Edvards PA (1990) Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups. Anal Chem 62:2676–2684

    Article  CAS  Google Scholar 

  • Atkinson AC (1985) Plots, transformations and regression. Clarendon Press edn, Oxford

    Google Scholar 

  • Azar AP, Nekoei M, Riahi S, Ganjali MR, Zare K (2011) A quantitative structure-retention relationship for the prediction of retention indices of the essential oils of Ammoides atlantica. J Serb Chem Soc 76:891–902. doi:10.2298/JSC100219076A

    Article  CAS  Google Scholar 

  • Babushok V (2015) Chromatographic retention indices in identification of chemical compounds. TrAC Trends Anal Chem 69:98–104. doi:10.1016/j.trac.2015.04.001

    Article  CAS  Google Scholar 

  • Bajpai VK, Al-Reza SM, Choi UK, Lee JH, Kang SC (2009) Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. Food Chem Toxicol 47:1876–1883. doi:10.1016/j.fct.2009.04.043

    Article  CAS  Google Scholar 

  • Devillers J (1996) Genetic algorithms in computer-aided molecular design. In: Devillers J (ed) Genetic algorithms in molecular modeling. Academic Press, London, pp 131–157

    Google Scholar 

  • Dimov N, Osman A, Mekenyan OV, Papazova D (1994) Selection of molecular descriptors used in quantitative structure-gas chromatographic retention relationships: I. Application to alkylbenzenes and naphthalenes. Anal Chim Acta 298:303–317. doi:10.1016/0003-2670(94)00280-0

    Article  CAS  Google Scholar 

  • Dossin E, Martin E, Diana P, Castellon A, Monge A, Pospisil P, Bentley M, Guy PA (2016) Prediction models of retention indices for increased confidence in structural elucidation during complex matrix analysis: application to gas chromatography coupled with high-resolution mass spectrometry. Anal Chem 88:7539–7547. doi:10.1021/acs.analchem.6b00868

    Article  CAS  Google Scholar 

  • Duvenbeck C, Zinn P (1993) List operations on chemical graphs. 3. Development of vertex and edge models for fitting retention index data. J Chem Inform Comput Sci 33:211–219. doi:10.1021/ci00012a005

    Article  CAS  Google Scholar 

  • Fritz DF, Sahil A, Kováts E (1979) Determination of hydroxyl groups in poly(ethylene glycols). Anal Chem 51:7–12. doi:10.1021/ac50037a010

    Article  CAS  Google Scholar 

  • Garkani-Nejad Z, Karlovits M, Demuth W, Stimpfl T, Vycudilik W, Jalali-Heravi M, Varmuza K (2004) Prediction of gas chromatographic retention indices of a diverse set of toxicologically relevant compounds. J Chromatogr A 1028:287–295. doi:10.1016/j.chroma.2003.12.003

    Article  CAS  Google Scholar 

  • Gautzsch R, Zinn P (1996) Use of incremental models to estimate the retention indexes of aromatic compounds. Chromatoghraphia 43:163–176. doi:10.1007/BF02292946

    Article  CAS  Google Scholar 

  • Georgakopoulos CG, Kiboris JC, Jurs PC (1991a) Prediction of gas chromatographic relative retention times of stimulants and narcotics. Anal Chem 63:2021–2024

    Article  CAS  Google Scholar 

  • Georgakopoulos CG, Tsika OG, Kiburis GC, Jurs PC (1991b) Prediction of gas chromatographic relative retention times of anabolic steroids. Anal Chem 63:2025

    Article  CAS  Google Scholar 

  • Görgényi M, Fekete Z, Seres L (1989) Estimation and prediction of the retention indices of selected trans-diazenes. Chromatographia 27:581–584. doi:10.1007/BF02258982

    Article  Google Scholar 

  • Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701. doi:10.1002/qsar.200610151

    Article  CAS  Google Scholar 

  • Hodjmohammadi MR, Ebrahimi P, Pourmorad F (2004) Quantitative structure–retention relationships (QSRR) of some CNS agents studied on DB-5 and DB-17 phases in gas chromatography. QSAR Comb Sci 23:295–302. doi:10.1002/qsar.200530869

    Article  CAS  Google Scholar 

  • Jalali-Heravi M, Ebrahimi-Najafabadi H (2011) Modeling of retention behaviors of most frequent components of essential oils in polar and non-polar stationary phases. J Sep Sci 34:1538–1546. doi:10.1002/jssc.201100042

    Article  CAS  Google Scholar 

  • Jaworska J (2005) QSAR applicability domain estimation by projection of the training set in descriptor space: a review. ATLA-NOTTINGHAM 3:445–459

    Google Scholar 

  • Kaliszan R, Höltje HD (1982) Gas chromatographic determination of molecular polarity and quantum chemical calculation of dipole moments in a group of substituted phenols. J Chromatogr A 234:303–311. doi:10.1016/S0021-9673(00)81868-3

    Article  CAS  Google Scholar 

  • Kiraly Z, Körtvélyesi T, Seres L, Görgényi M (1996) Structure-retention relationships in the gas chromatography of N,N-dialkylhydrazones. Chromatographia 42:653–659. doi:10.1007/BF02267697

    Article  CAS  Google Scholar 

  • Kortvelyesi T, Gorgenyi M, Seres L (1995) Correlation of retention indices with van der Waals’ volumes and surface areas: alkanes and azo compounds. Chromatographia 41:282–286. doi:10.1007/BF02688041

    Article  CAS  Google Scholar 

  • Körtvélyesi T, Görgényi M, Héberger K (2001) Correlation between retention indices and quantum-chemical descriptors of ketones and aldehydes on stationary phases of different polarity. Anal Chim Acta 428:73–82. doi:10.1016/S0003-2670(00)01220-4

    Article  Google Scholar 

  • Kováts ES (1958) Gas chromatographic characterization of organic compounds. I. Retention indexes of aliphatic halides, alcohols, aldehydes, and ketones. Helv Chim Acta 41:1915–1932

    Article  Google Scholar 

  • Kubinyi H (1994) Variable selection in QSAR studies. I. An evolutionary algorithm. Quant Struct Act Rel 13:285–294. doi:10.1002/qsar.19940130306

    CAS  Google Scholar 

  • Leardi R (1994) Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection. J Chemom 8:65–79. doi:10.1002/cem.1180080107

    Article  CAS  Google Scholar 

  • Liang X, Wang W, Schramm W, Zhang Q, Oxynos K, Henkelmann B, Kettrup A (2000) A new method of predicting of gas chromatographic retention indices for polychlorinated dibenzofurans (PCDFs). Chemosphere 41:1889–1895. doi:10.1016/S0045-6535(00)00052-7

    Article  Google Scholar 

  • Liu F, Liang Y, Cao C, Zhou N (2007) Theoretical prediction of the Kováts retention index for oxygen-containing organic compounds using novel topological indices. Anal Chim Acta 594:279–289. doi:10.1016/j.aca.2007.05.023

    Article  CAS  Google Scholar 

  • Mondello L, Wiley FFNSC Library (2015) Mass spectra of flavors and fragrances of natural and synthetic compounds. Wiley, Hoboken

    Google Scholar 

  • NIST (2017) Mass Spectral Library, Standard Reference Data Program, ed, National Institute of Standards and Technology, Gaithersburg, Maryland

  • Noori H (2012) Linear and nonlinear quantitative structure linear retention indices relationship models for essential oils. Eurasian J Anal Chem 8:50–63

    Google Scholar 

  • Noorizadeh H, Farmany A (2010) QSRR models to predict retention indices of cyclic compounds of essential oils. Chromatographia 72:563–569. doi:10.1365/s10337-010-1660-4

    Article  CAS  Google Scholar 

  • Olivero J, Gracia T, Payares P, Vivas R, Díaz D, Daza E, Geerlings P (1997) Molecular structure and gas chromatographic retention behavior of the components of ylang–ylang oil. J Pharm Sci 86:625–630. doi:10.1021/js960196u

    Article  CAS  Google Scholar 

  • Ong VS, Hites RS (1991) Relationship between gas chromatographic retention indexes and computer-calculated physical properties of four compound classes. Anal Chem 63:2829–2837. doi:10.1021/ac00024a005

    Article  CAS  Google Scholar 

  • Osmialowski K, Halkiewicz J, Radecki A, Kaliszan R (1985) Quantum chemical parameters in correlation analysis of gas–liquid chromatographic retention indices of amines. J Chromatogr A 346:53–60. doi:10.1016/S0021-9673(00)90493-X

    Article  CAS  Google Scholar 

  • Peng CT, Ding SF, Hua RL, Yang WC (1988) Prediction of retention indexes: I. Structure–retention index relationship on apolar columns. J Chromatogr A 436:137–172. doi:10.1016/S0021-9673(00)94575-8

    Article  CAS  Google Scholar 

  • Qin L-T, Liu S-S, Liu H-L, Tong J (2009) Comparative multiple quantitative structure–retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques. J Chromatogr A 1216:5302–5312. doi:10.1016/j.chroma.2009.05.016

    Article  CAS  Google Scholar 

  • Qin L-T, Liu S-S, Chen F, Xiao Q-F, Wu Q-S (2013a) Chemometric model for predicting retention indices of constituents of essential oils. Chemosphere 90:300–305. doi:10.1016/j.chemosphere.2012.07.010

    Article  CAS  Google Scholar 

  • Qin LT, Liu SS, Chen F, Wu QS (2013b) Development of validated quantitative structure–retention relationship models for retention indices of plant essential oils. J Sep Sci 36:1553–1560. doi:10.1002/jssc.201300069

    Article  CAS  Google Scholar 

  • Rohrbaugh RH, Jurs PC (1986) Prediction of gas chromatographic retention indexes of polycyclic aromation compounds and nitrated polycyclic aromatic compounds. Anal Chem 58:1210–1212. doi:10.1021/ac00297a052

    Article  CAS  Google Scholar 

  • Rohrschneider L (1965) Die vorausberechnung von gaschromatographischen retentionszeiten aus statistisch ermittelten “Polaritäten”. J Chromatogr A 17:1–12. doi:10.1016/S0021-9673(00)99831-5

    Article  CAS  Google Scholar 

  • Schade T, Andersson TJ (2006) Speciation of alkylated dibenzothiophenes through correlation of structure and gas chromatographic retention indexes. J Chromatogr A 1117:206–213. doi:10.1016/j.chroma.2006.03.079

    Article  CAS  Google Scholar 

  • Sielex K, Andersson J (2000) Prediction of gas chromatographic retention indices of polychlorinated dibenzothiophenes on non-polar columns. J Chromatogr A 886:105–120. doi:10.1016/S0021-9673(99)01079-1

    Article  Google Scholar 

  • Skrbic B, Onjia A (2006) Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network. J Chromatogr A 1108:279–284. doi:10.1016/j.chroma.2006.01.080

    Article  CAS  Google Scholar 

  • Statsoft (2001) Statistica, 6th edn. Data Analysis Software System, Tulsa

    Google Scholar 

  • Todeschini R, Ballabio D, Consonni V, Mauri A, Pavan M (2004) MOBYDIGS computer software. TALETE srl, Milano

    Google Scholar 

  • Todeschini R, Consonni V, Mauri A, Pavan M (2007) DRAGON, v. 5.5, Talete srl, Milano

  • von Mühlen C, Marriott PJ (2011) Retention indices in comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 401:2351–2360

    Article  Google Scholar 

  • Yan J, Liu X-B, Zhu W-W, Zhong X, Sun Q, Liang Y-Z (2015) Retention indices for identification of aroma compounds by GC: development and application of a retention index database. Chromatographia 78:89–108. doi:10.1007/s10337-014-2801-y

    Article  CAS  Google Scholar 

  • Yancey JA (1994) Review of liquid phases in gas chromatography, part I: intermolecular forces. J Chromatogr Sci 32:349–357. doi:10.1093/chromsci/32.8.349

    Article  CAS  Google Scholar 

  • Zhang J, Zheng C-H, Xia Y, Wang B, Chen P (2017) Optimization enhanced genetic algorithm-support vector regression for the prediction of compound retention indices in gas chromatography. Neurocomputing 240:183–190. doi:10.1016/j.neucom.2016.11.070

    Article  Google Scholar 

  • Zhao C, Zeng Y, Wan M, Li R, Liang Y, Li C et al (2009) Comparative analysis of essential oils from eight herbal medicines with pungent flavor and cool nature by GC–MS and chemometric resolution methods. J Sep Sci 32:660–670. doi:10.1002/jssc.200800484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

YM-P gives thanks to support from USFQ with partial finance of Project ID5400 “Chancellor Grant 2016”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Barigye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marrero-Ponce, Y., Barigye, S.J., Jorge-Rodríguez, M.E. et al. QSRR prediction of gas chromatography retention indices of essential oil components. Chem. Pap. 72, 57–69 (2018). https://doi.org/10.1007/s11696-017-0257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0257-x

Keywords

Navigation