Skip to main content
Log in

Cloud point extraction utilizable for separation and preconcentration of (ultra)trace elements in biological fluids before their determination by spectrometric methods: a brief review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This review summarizes and discusses applications related to the determination of (ultra)trace elements in biological fluids using cloud point extraction as sample pretreatment technique. Biological fluids, such as urine, whole blood, serum or plasma, are the most often analyzed biological materials in these applications. Spectrometric methods, such as flame atomic absorption spectrometry, electrothermal atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry, are commonly used for quantification of elements preconcentrated by the extraction technique. Optimized extraction procedures lead to the high extraction recoveries of the target analytes. High enrichment factors achieved lead to the lowering of quantification limits. All these achievements illustrate the great potential of extractions for reliable quantification of (ultra)trace elements in complex biological matrix what is documented in this review of a number of works published on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altunay N, Gürkan R (2015) A new cloud point extraction procedure for determination of inorganic antimony species in beverages and biological samples by flame atomic absorption spectrometry. Food Chem 175:507–515. doi:10.1016/j.foodchem.2014.12.012

    Article  CAS  Google Scholar 

  • Andrada D, Rollemberg MD, da Silva JBB (2005) Determination of Ag, Au, and Bi in ethanol by ETAAS using zirconium as permanent modifier. At Spectrosc 26:151–157

    CAS  Google Scholar 

  • Anthea M, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD (1993) Human biology and health. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Arain SS, Kazi TG, Arain JB, Afridi HI, Kazi AG, Nasreen S, Brahman KD (2014) Determination of nickel in blood and serum samples of oropharyngeal cancer patients consumed smokeless tobacco products by cloud point extraction coupled with flame atomic absorption spectrometry. Environ Sci Pollut Res 21:12017–12027. doi:10.1007/s11356-014-3091-5

    Article  CAS  Google Scholar 

  • Aranda PR, Gil RA, Moyano S, De Vito I, Martinez LD (2008a) Cloud point extraction for ultra-trace Cd determination in microwave-digested biological samples by ETAAS. Talanta 77:663–666. doi:10.1016/j.talanta.2008.07.009

    Article  CAS  Google Scholar 

  • Aranda PR, Gil RA, Moyano S, De Vito IE, Martinez LD (2008b) Cloud point extraction of mercury with PONPE 7.5 prior to its determination in biological samples by ETAAS. Talanta 75:307–311. doi:10.1016/j.talanta.2007.11.012

    Article  CAS  Google Scholar 

  • Bezerra MA, dos Santos QO, Santos AG, Novaes CG, Ferreira SLC, de Souza VS (2016) Simplex optimization: a tutorial approach and recent applications in analytical chemistry. Microchem J 124:45–54. doi:10.1016/j.microc.2015.07.023

    Article  CAS  Google Scholar 

  • Bolann BJ, Rahil-Khazen R, Henriksen H, Isrenn R, Ulvik RJ (2007) Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory. Scand J Clin Lab Invest 67:353–366. doi:10.1080/00365510601095281

    Article  CAS  Google Scholar 

  • Borges DLG, da Veiga MAMS, Frescura VLA, Welz B, Curtius AJ (2003) Cloud-point extraction for the determination of Cd, Pb and Pd in blood by electrothermal atomic absorption spectrometry, using Ir or Ru as permanent modifiers. J Anal At Spectrom 18:501–507. doi:10.1039/B209680C

    Article  Google Scholar 

  • Brown RJC, Milton MJT (2005) Analytical techniques for trace element analysis: an overview. TrAC Trends Anal Chem 24:266–274. doi:10.1016/j.trac.2004.11.010

    Article  CAS  Google Scholar 

  • Chellan P, Sadler PJ (2015) The elements of life and medicines. Philos Trans R Soc A Math Phys Eng Sci 373, Art. No. 20140182. doi:10.1098/rsta.2014.0182

  • Chen Y, Belzile N (2010) High performance liquid chromatography coupled to atomic fluorescence spectrometry for the speciation of the hydride and chemical vapour-forming elements As, Se, Sb and Hg: a critical review. Anal Chim Acta 671:9–26. doi:10.1016/j.aca.2010.05.011

    Article  CAS  Google Scholar 

  • da Silva MAM, Frescura VLA, Curtius AJ (2001) Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry, following cloud point extraction. Spectrochim Acta Part B 56:1941–1949. doi:10.1016/S0584-8547(01)00323-8

    Article  Google Scholar 

  • de Hoffmann E, Stroobant V (2007) Mass spectrometry, principles and applications. John Wiley & Sons Ltd, Chichester

    Google Scholar 

  • Dědina J (2007) Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: on the way towards the ideal atomizer. Spectrochim Acta Part B 62:846–872. doi:10.1016/j.sab.2007.05.002

    Article  Google Scholar 

  • Depoi FD, de Oliveira TC, de Moraes DP, Pozebon D (2012) Preconcentration and determination of As, Cd, Pb and Bi using different sample introduction systems, cloud point extraction and inductively coupled plasma optical emission spectrometry. Anal Methods 4:89–95. doi:10.1039/C1AY05246B

    Article  Google Scholar 

  • Donati GL, Pharr KE, Calloway CP, Nóbrega JA, Jones BT (2008) Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry. Talanta 76:1252–1255. doi:10.1016/j.talanta.2008.05.003

    Article  CAS  Google Scholar 

  • Doroschuk VO, Grogul AB, Mandzyuk YS, Makukha OG, Grytsyk NO (2016) Cloud point extraction of disulfiram for its HPLC-MS/MS determination in synthetic urine. Chem Pap 70:1316–1321. doi:10.1515/chempap-2016-0074

    Article  CAS  Google Scholar 

  • Fan ZF, Bai F (2007) Determination of trace amounts of silver in various samples by electrothermal atomic absorption spectrometry after sample preparation using cloud point extraction. At Spectrosc 28:30–34

    Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box–Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. doi:10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  • Fumio K, Yasuo K, Terue K, Yoshinori K, Hideki K, Baatar P, Jugder O, Ulziiburen C (2012) Influence of essential trace minerals and micronutrient insufficiencies on harmful metal overload in a Mongolian patient with multiple sclerosis. Curr Aging Sci 5:112–125. doi:10.2174/1874609811205020112

    Article  Google Scholar 

  • Garg U, Hammett-Stabler CA (2010) Clinical applications of mass spectrometry. Methods and protocols. Humana Press, c/o Springer, New York

    Book  Google Scholar 

  • Ghaedi M, Shokrollahi A, Niknam K, Niknam E, Najibi A, Soylak M (2009) Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples. J Hazard Mater 168:1022–1027. doi:10.1016/j.jhazmat.2009.02.130

    Article  CAS  Google Scholar 

  • Ghambarian M, Yamini Y, Saleh A, Shariati S, Yazdanfar N (2009) Taguchi OA16 orthogonal array design for the optimization of cloud point extraction for selenium determination in environmental and biological samples by tungsten-modified tube electrothermal atomic absorption spectrometry. Talanta 78:970–976. doi:10.1016/j.talanta.2009.01.002

    Article  CAS  Google Scholar 

  • Giacomelli MBO, da Silva JBB, Saint’Pierre TD, Curtius AJ (2004) Use of iridium plus rhodium as permanent modifier to determine As, Cd and Pb in acids and ethanol by electrothermal atomic absorption spectrometry. Microchem J 77:151–156. doi:10.1016/j.microc.2004.02.009

    Article  CAS  Google Scholar 

  • Giné MF, Patreze AE, Silva EL, Sarkis JES, Kakazu MH (2008) Sequential cloud point extraction of trace elements from biological samples and determination by inductively coupled plasma mass spectrometry. J Braz Chem Soc 19:471–477. doi:10.1590/S0103-50532008000300014

    Article  Google Scholar 

  • González-Nieto J, López-Sánchez JF, Rubio R (2006) Comparison of chemical modifiers for selenium determination in soil aqua regia extracts by ZETAAS. Talanta 69:1118–1122. doi:10.1016/j.talanta.2005.12.012

    Article  Google Scholar 

  • Hagarová I (2009) Coupling cloud point extraction to atomic spectrometric methods for separation, preconcentration and speciation of metals. Chem Listy 103:712–720

    Google Scholar 

  • Hagarová I (2014) Utilization of supramolecular solvents in the extraction of metals. Chem Listy 108:949–955

    Google Scholar 

  • Hagarová I, Urík M (2016) New approaches to the cloud point extraction: utilizable for separation and preconcentration of trace metals. Curr Anal Chem 12:87–93. doi:10.2174/1573411011666150601204931

    Article  Google Scholar 

  • Hagarová I, Kubová J, Matúš P, Bujdoš M (2008) Speciation of inorganic antimony in natural waters by electrothermal atomic absorption spectrometry after selective separation and preconcentration of antimony(III) with cloud point extraction. Acta Chim Slov 55:528–534

    Google Scholar 

  • Hagarová I, Bujdoš M, Matúš P, Čanecká L (2012) The use of two extraction procedures in combination with electrothermal AAS for speciation of inorganic antimony in natural waters. Chem Listy 106:136–142

    Google Scholar 

  • Hagarová I, Bujdoš M, Matúš P, Kubová J (2013) Coacervative ectraction of trace lead from natural waters prior to its determination by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 88:75–79. doi:10.1016/j.sab.2013.03.010

    Article  Google Scholar 

  • Hasssanien MM, Ali AAZ (2012) Determination of bismuth traces by HG-ICP-OES after separation by cloud point extraction using thiourea and iodide mixture. Arab J Sci Eng 37:1271–1282. doi:10.1007/s13369-012-0252-z

    Article  CAS  Google Scholar 

  • Hsieh BT, Chang CY, Chang YC, Cheng KY (2011) Relationship between the level of essential metal elements in human hair and coronary heart disease. J Radioanal Nucl Chem 290:165–169. doi:10.1007/s10967-011-1174-z

    Article  CAS  Google Scholar 

  • Ivanenko NB, Ganeev AA, Solovyev ND, Moskvin LN (2011) Determination of trace elements in biological fluids. J Anal Chem 66:784–799. doi:10.1134/S1061934811090036

    Article  CAS  Google Scholar 

  • Jiang J, Lu S, Zhang H, Liu G, Lin K, Huang W, Luo R, Zhang X, Tang C, Yu Y (2015) Dietary intake of human essential elements from a Total Diet Study in Shenzhen, Guangdong Province, China. J Food Compos Anal 39:1–7. doi:10.1016/j.jfca.2014.10.012

    Article  Google Scholar 

  • Kandhro GA, Kazi TG, Baig JA, Sirajuddin, Afridi HI, Shah AQ, Sheikh HR, Kolachi NF, Wadhwa SK (2010) Zinc and iron determination in serum and urine samples of thyroid patients using cloud point extraction. J AOAC Int 93:1589–1594

    CAS  Google Scholar 

  • Kornahrens H, Cook KD, Armstrong DW (1982) Mechanism of enhancement of analyte sensitivity by surfactants in flame atomic spectrometry. Anal Chem 54:1325–1329. doi:10.1021/ac00245a017

    Article  CAS  Google Scholar 

  • Li YJ, Hu B, Jiang ZC (2006) On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Anal Chim Acta 576:207–214. doi:10.1016/j.aca.2006.06.018

    Article  CAS  Google Scholar 

  • Liu HM, Jiang JK, Lin YH (2012) Simultaneous determination of gallium(III) and indium(III) in urine and water samples with cloud point extraction and by inductively coupled plasma optical emission spectrometry. Anal Lett 45:2096–2107. doi:10.1080/00032719.2012.680088

    Article  CAS  Google Scholar 

  • Maranhão TA, Martendal E, Borges DLG, Carasek E, Welz B, Curtius AJ (2007) Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box–Behnken design. Spectrochim Acta, Part B 62:1019–1027. doi:10.1016/j.sab.2007.05.008

    Article  Google Scholar 

  • Mortada WI, Ali AZ, Hassanien MM (2013a) Cloud point extraction of Pd(II), Au(III), and Ag(I) prior to their determination by graphite furnace AAS. Can J Chem 91:1219–1224. doi:10.1139/cjc-2013-0250

    Article  CAS  Google Scholar 

  • Mortada WI, Hassanien MM, El-Asmy AA (2013b) Speciation of platinum in blood plasma and urine by micelle-mediated extraction and graphite furnace atomic absorption spectrometry. J Trace Elem Med Biol 27:267–272. doi:10.1016/j.jtemb.2013.04.004

    Article  CAS  Google Scholar 

  • Mortada WI, Hassanien MM, Donia AF, Shokeir AA (2015) Application of cloud point extraction for cadmium in biological samples of occupationally exposed workers: relation between cadmium exposure and renal lesion. Biol Trace Elem Res 168:303–310. doi:10.1007/s12011-015-0365-9

    Article  CAS  Google Scholar 

  • Novaes CG, Bezerra MA, da Silva EGP, dos Santos AMP, Romão ILD, Neto JHS (2016) A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchem J 128:331–346. doi:10.1016/j.microc.2016.05.015

    Article  CAS  Google Scholar 

  • Oliveira Souza JM, Tarley CRT (2008) Preconcentration and speciation of Sb(III) and Sb(V) in water samples and blood serum after cloud point extraction using chemometric tools for optimization. Anal Lett 41:2465–2486. doi:10.1080/00032710802352522

    Article  Google Scholar 

  • Ortega C, Gomez MR, Olsina RA, Silva MF, Martinez LD (2002) On-line cloud point preconcentration and determination of gadolinium in urine using flow injection inductively coupled plasma optical emission spectrometry. J Anal At Spectrom 17:530–533. doi:10.1039/B111633A

    Article  CAS  Google Scholar 

  • Ortega C, Cerutti S, Olsina RA, Silva MF, Martinez LD (2003) On-line complexation/cloud point preconcentration for the sensitive determination of dysprosium in urine by flow injection inductively coupled plasma-optical emission spectrometry. Anal Bioanal Chem 375:270–274. doi:10.1007/s00216-002-1677-0

    Article  CAS  Google Scholar 

  • Ossipov K, Seregina IF, Bolshov MA (2016) Inductively coupled plasma mass spectrometry in the analysis of biological samples and pharmaceutical drug. Russ Chem Rev 85:335–355. doi:10.1070/RCR4583

    Article  CAS  Google Scholar 

  • Parsons PJ, Barbosa F (2007) Atomic spectrometry and trends in clinical laboratory medicine. Spectrochim Acta Part B 62:992–1003. doi:10.1016/j.sab.2007.03.007

    Article  Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VR, Prasad LK (2015) A review on role of essential trace elements in health and disease. J Dr NTR Univ Health Sci 4:75–85. doi:10.4103/2277-8632.158577

    Article  Google Scholar 

  • Pytlakowska K, Kozik V, Dabioch M (2013) Complex-forming organic ligands in cloud-point extraction of metal ions: a review. Talanta 110:220–228. doi:10.1016/j.talanta.2013.02.037

    Article  Google Scholar 

  • Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168. doi:10.1021/ie980389n

    Article  CAS  Google Scholar 

  • Raposo JD, Costa LM, Barbeira PJS (2015) Simultaneous determination of Na, K and Ca in biodiesel by flame atomic emission spectrometry. J Braz Chem Soc 26:147–155. doi:10.5935/0103-5053.20140231

    CAS  Google Scholar 

  • Rončević S, Benutić A, Nemet I, Gabelica B (2012) Tin content determination in canned fruits and vegetables by hydride generation inductively coupled plasma optical emission spectrometry. Int J Anal Chem Art.N.: 376381. doi:10.1155/2012/376381

  • Sanchez-Rodas D, Corns WT, Chen B, Stockwell PB (2010) Atomic fluorescence spectrometry: a suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J Anal At Spectrom 25:933–946. doi:10.1039/b917755h

    Article  CAS  Google Scholar 

  • Sang H, Liang P, Du D (2008) Determination of trace aluminum in biological and water samples by cloud point extraction preconcentration and graphite furnace atomic absorption spectrometry detection. J Hazard Mater 154:1127–1132. doi:10.1016/j.jhazmat.2007.11.018

    Article  CAS  Google Scholar 

  • Seiler HG, Sigel A, Sigel H (1994) Handbook on metals in clinical and analytical chemistry. Marcel Dekker Inc, New York

    Google Scholar 

  • Shah F, Kazi TG, Afridi HI, Naeemullah, Arain MB, Baig JA (2011) Cloud point extraction for determination of lead in blood samples of children, using different ligands prior to analysis by flame atomic absorption spectrometry: a multivariate study. J Hazard Mater 192:1132–1139. doi:10.1016/j.jhazmat.2011.06.017

    Article  CAS  Google Scholar 

  • Shemirani F, Baghdadi M, Ramezani M, Jamali MR (2005) Determination of ultra trace amounts of bismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS) after cloud point extraction. Anal Chim Acta 534:163–169. doi:10.1016/j.aca.2004.06.036

    Article  CAS  Google Scholar 

  • Shokrollahi A, Tavallali H, Montaseri Z, Niknam K (2012) Using an indol derivative as complexing agent for cloud point preconcentration and determination of magnesium and silver ions in various samples by FAAS. J Chil Chem Soc 57:1134–1139. doi:10.4067/S0717-97072012000200017

    Article  CAS  Google Scholar 

  • Shokrollahi A, Joybar S, Haghighi HE, Niknam K, Niknam E (2013) Application of cloud point preconcentration and flame atomic absorption spectrometry for the determination of cadmium and zinc ions in urine, blood serum and water samples. Quim Nova 36:368–374. doi:10.1590/S0100-40422013000300004

    Article  CAS  Google Scholar 

  • Skalny AV, Rudakov IA (2004) Bioelements in medicine. Mir, Moscow

    Google Scholar 

  • Stalikas CD (2002) Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis. TrAC Trends Anal Chem 21:343–355. doi:10.1016/S0165-9936(02)00502-2

    Article  CAS  Google Scholar 

  • Stecka H, Pohl P (2011) Pre-concentration of lithium prior to its determination in honey by flame optical emission spectrometry. J Braz Chem Soc 22:677–683. doi:10.1590/S0103-50532011000400010

    Article  CAS  Google Scholar 

  • Sun M, Wu Q (2011) Determination of trace bismuth in human serum by cloud point extraction coupled flow injection inductively coupled plasma optical emission spectrometry. J Hazard Mater 192:935–939. doi:10.1016/j.jhazmat.2010.11.044

    Article  CAS  Google Scholar 

  • Sun M, Wu QH (2012) Cloud point extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr(III) in human serum samples. J Pharm Biomed Anal 60:14–18. doi:10.1016/j.jpba.2011.10.034

    Article  CAS  Google Scholar 

  • Vékey K, Telekes A, Vertes A (2008) Medical applications of mass spectrometry. Elsevier, Amsterdam

    Google Scholar 

  • Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley-VCH, Weinheim

    Google Scholar 

  • Welz B, Schlemmer G, Mudakavi JR (1992) Palladium nitrate–magnesium nitrate modifier for electrothermal atomic-absorption spectrometry. Part 5. Performance for the determination of 21 elements. J Anal At Spectrom 7:1257–1271. doi:10.1039/JA9920701257

    Article  CAS  Google Scholar 

  • Wu P, Zhang Y, Lv Y, Hou X (2006) Cloud point extraction-thermospray spectrometry for determination of flame quartz furnace atomic absorption ultratrace cadmium in water and urine. Spectrochim Acta Part B 61:1310–1314. doi:10.1016/j.sab.2006.10.017

    Article  Google Scholar 

  • Yazdi AS (2011) Surfactant-based extraction methods. TrAC Trends Anal Chem 30:918–929. doi:10.1016/j.trac.2011.02.010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences under the contract VEGA 1/0274/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Hagarová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagarová, I. Cloud point extraction utilizable for separation and preconcentration of (ultra)trace elements in biological fluids before their determination by spectrometric methods: a brief review. Chem. Pap. 71, 869–879 (2017). https://doi.org/10.1007/s11696-016-0014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0014-6

Keywords

Navigation