Skip to main content
Log in

Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019)

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

The changes in the composition and function of gut microbiota affect the metabolic functions (which are mediated by microbial effects) in patients with obesity, resulting in significant physiological regulation in these patients. Most of the studies emphasize that the Western-style diet (high fat and low vegetable consumption) leads to significant changes in the intestinal microbiome in individuals with metabolic syndrome. A deeper understanding of the profiles of gut microbes will contribute to the development of new therapeutic strategies for the management of metabolic syndrome and other metabolic diseases and related disorders. The aim of this review is to evaluate recent experimental evidence outlining the alterations of gut microbiota composition and function in recovery from bariatric surgical operations with an emphasis on sleeve gastrectomy and gastric bypass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Booijink CC, et al., Microbial communities in the human small intestine: coupling diversity to metagenomics. 2007.

  2. Ventura M, et al., Microbial diversity in the human intestine and novel insights from metagenomics. 2009.

  3. Gosalbes MJ, Durbán A, Pignatelli M, et al. Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One. 2011;6(3):e17447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turroni F, Ribbera A, Foroni E, et al. Human gut microbiota and Bifidobacteria: from composition to functionality. Antonie Van Leeuwenhoek. 2008;94(1):35–50.

    Article  PubMed  Google Scholar 

  5. Salonen A, Palva A, de Vos WM. Microbial functionality in the human intestinal tract. Front Biosci. 2009;14:3074–84.

    Article  CAS  Google Scholar 

  6. Fraher MH, O’toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9(6):312–22.

    Article  CAS  PubMed  Google Scholar 

  7. Petrosino JF, Highlander S, Luna RA, et al. Metagenomic pyrosequencing and microbial identification. Clin Chem. 2009;55(5):856–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tremaroli V, BÃckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242.

    Article  CAS  PubMed  Google Scholar 

  9. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dong TS, Gupta A. Influence of early life, diet, and the environment on the microbiome. Clin Gastroenterol Hepatol. 2018;

  11. Membrez M, Blancher F, Jaquet M, et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008;22(7):2416–26.

    Article  CAS  PubMed  Google Scholar 

  12. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81.

    Article  CAS  PubMed  Google Scholar 

  13. Delzenne NM, Neyrinck AM, Bäckhed F, et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol. 2011;7(11):639–46.

    Article  CAS  PubMed  Google Scholar 

  14. Cani PD, Lecourt E, Dewulf EM, et al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am J Clin Nutr. 2009;90(5):1236–43.

    Article  CAS  PubMed  Google Scholar 

  15. Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jandhyala SM et al. Role of the normal gut microbiota. World journal of gastroenterology: WJG. 2015;21(29):8787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. den Besten G, van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.

    Article  CAS  Google Scholar 

  18. Bindels LB, Porporato P, Dewulf EM, et al. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer. 2012;107(8):1337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tan J, et al., The role of short-chain fatty acids in health and disease, in Advances in immunology. 2014, Elsevier. p. 91–119.

  20. Ridlon JM, Kang DJ, Hylemon PB, et al. Bile acids and the gut microbiome. Current opinion in gastroenterology. 2014;30(3):332–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ley RE, Backhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005;102(31):11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turnbaugh PJ et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027.

    Article  PubMed  Google Scholar 

  23. Duncan SH, Lobley GE, Holtrop G, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32(11):1720–4.

    Article  CAS  Google Scholar 

  24. Ussar S, Griffin NW, Bezy O, et al. Interactions between gut microbiota, host genetics and diet modulate the predisposition to obesity and metabolic syndrome. Cell Metab. 2015;22(3):516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science. 2010;328(5975):228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Luccia B et al. Rescue of fructose-induced metabolic syndrome by antibiotics or faecal transplantation in a rat model of obesity. PLoS One. 2015;10(8):e0134893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Haro C, Garcia-Carpintero S, Alcala-Diaz JF, et al. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2016;27:27–31.

    Article  CAS  PubMed  Google Scholar 

  28. Le Chatelier E et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.

    Article  PubMed  CAS  Google Scholar 

  29. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455(7216):1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  31. Sandoval D. Bariatric surgeries: beyond restriction and malabsorption. Int. J. Obes. (Lond.). 2011;35(Suppl. 3):S45–9.

    Article  Google Scholar 

  32. Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial host metabolic cross-talk. Gut. 2011;60(9):1214–23.

    Article  CAS  PubMed  Google Scholar 

  33. Osto M, Abegg K, Bueter M, et al. Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol Behav. 2013;119:92–6.

    Article  CAS  PubMed  Google Scholar 

  34. Guo Y, Liu CQ, Shan CX, et al. Gut microbiota after Roux en Y gastric bypass and sleeve gastrectomy in a diabetic rat model: increased diversity and associations of discriminant genera with metabolic changes. Diabetes Metab Res Rev. 2017;33(3):e2857.

    Article  CAS  Google Scholar 

  35. Shao Y, Ding R, Xu B, et al. Alterations of gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in Sprague-Dawley rats. Obes Surg. 2017;27(2):295–302.

    Article  PubMed  Google Scholar 

  36. Liou AP et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Science Translational Medicine. 2013;5(178):178ra41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jahansouz C, Staley C, Bernlohr DA, et al. Sleeve gastrectomy drives persistent shifts in the gut microbiome. Surg Obes Relat Dis. 2017;13(6):916–24.

    Article  PubMed  Google Scholar 

  38. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci. 2009;106(7):2365–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Furet J-P, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong L-C, Tap J, Aron-Wisnewsky J, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  41. Palleja A, Kashani A, Allin KH, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome medicine. 2016;8(1):67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Aron-Wisnewsky J, Prifti E, Belda E, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68(1):70–82.

    Article  CAS  PubMed  Google Scholar 

  43. Graessler J, Qin Y, Zhong H, et al. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. The Pharmacogenomics Journal. 2013;13(6):514–22.

    Article  CAS  PubMed  Google Scholar 

  44. Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.

    Article  PubMed  Google Scholar 

  45. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 2015;21(3):369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li J et al. Experimental bariatric surgery in rats generates a cytotoxic chemical environment in the gut contents. Front Microbiol. 2011;2:183.

    PubMed  PubMed Central  Google Scholar 

  48. Carvalho B et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823–34.

    Article  CAS  PubMed  Google Scholar 

  49. Jones ML, Martoni CJ, Ganopolsky JG, et al. The human microbiome and bile acid metabolism: dysbiosis, dysmetabolism, disease and intervention. Expert Opin Biol Ther. 2014;14(4):467–82.

    Article  CAS  PubMed  Google Scholar 

  50. Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci. 2013;110(22):9066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.

    Article  CAS  PubMed  Google Scholar 

  52. Guo Y, Huang ZP, Liu CQ, et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2018;178(1):43–56.

    Article  CAS  PubMed  Google Scholar 

  53. Magouliotis DE, Tasiopoulou VS, Sioka E, et al. Impact of bariatric surgery on metabolic and gut microbiota profile: a systematic review and meta-analysis. Obes Surg. 2017;27(5):1345–57.

    Article  PubMed  Google Scholar 

  54. Jahansouz C, Staley C, Kizy S, et al. Antibiotic-induced disruption of intestinal microbiota contributes to failure of vertical sleeve gastrectomy. Ann Surg. 2019;269(6):1092–100.

    Article  PubMed  Google Scholar 

  55. Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:1–12.

    Article  CAS  Google Scholar 

  56. Ryan KK, Tremaroli V, Clemmensen C, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang X, Wang Y, Zhong M, et al. Duodenal-jejunal bypass preferentially elevates serum taurine- conjugated bile acids and alters gut microbiota in a diabetic rat model. Obes Surg. 2016;26(8):1890–9.

    Article  PubMed  Google Scholar 

  58. Baud G, Daoudi M, Hubert T, et al. Bile diversion in roux-en-Y gastric bypass modulates sodium-dependent glucose intestinal uptake. Cell Metab. 2016;23(3):547–53.

    Article  CAS  PubMed  Google Scholar 

  59. Sachdev S, Wang Q, Billington C, et al. FGF 19 and bile acids increase following Roux-en-Y gastric bypass but not after medical management in patients with type 2 diabetes. Obes Surg. 2016;26(5):957–65.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhong M-W, Liu SZ, Zhang GY, et al. Alterations in gut microbiota during remission and recurrence of diabetes after duodenal-jejunal bypass in rats. World J Gastroenterol. 2016;22(29):6706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Woodard GA, Encarnacion B, Downey JR, et al. Probiotics improve outcomes after roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg. 2009;13(7):1198–204.

    Article  PubMed  Google Scholar 

  62. Heiman ML, Greenway FL. A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular metabolism. 2016;5(5):317–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gralka E, Luchinat C, Tenori L, et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am J Clin Nutr. 2015;102(6):1313–22.

    Article  CAS  PubMed  Google Scholar 

  64. Beasley DE, Koltz AM, Lambert JE, et al. The evolution of stomach acidity and its relevance to the human microbiome. PLoS One. 2015;10(7):e0134116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Saad M, Santos A, Prada P. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31(4):283–93.

    Article  CAS  PubMed  Google Scholar 

  67. Basso N, Soricelli E, Castagneto-Gissey L, et al. Insulin resistance, microbiota, and fat distribution changes by a new model of vertical sleeve gastrectomy in obese rats. Diabetes. 2016;65(10):2990–3001.

    Article  CAS  PubMed  Google Scholar 

  68. Clemente-Postigo M, Roca-Rodriguez MM, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis. 2015;11(4):933–9.

    Article  PubMed  Google Scholar 

  69. Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.

    Article  CAS  PubMed  Google Scholar 

  70. Singh RK, Chang H, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Schroeder BO, Birchenough GMH, Stahlman M, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host & Microbe. 2018;23(1):27–40. e7

    Article  CAS  Google Scholar 

  72. Zou J, Chassaing B, Singh V, et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host & Microbe. 2018;23(1):41–53. e4

    Article  CAS  Google Scholar 

  73. Thompson SV, Hannon BA, An R, et al. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2017;106(6):1514–28.

    Article  CAS  PubMed  Google Scholar 

  74. Martel J, Ojcius DM, Chang CJ, et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2017;13(3):149–60.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang X, Zhao Y, Xu J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. ScientiPic Reports. 2015;5:14405.

    Article  CAS  Google Scholar 

  76. McDonald D, Hyde E, Debelius JW, et al. American gut: an open platform for citizen science microbiome research. mSystems. 2018;3(3):e00031–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vindigni SM, Surawicz CM. Fecal microbiota transplantation. Gastroenterol Clin N Am. 2017;46:171–85.

    Article  Google Scholar 

  78. Wilson BC, Vatanen T, CutPield WS, et al. The super-donor phenomenon in fecal microbiota transplantation. Front Cell Infect Microbiol. 2019;9:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kriss M, Hazleton KZ, Nusbacher NM, et al. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol. 2018;44:34–40.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6.

    Article  CAS  PubMed  Google Scholar 

  81. Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.

    Article  CAS  PubMed  Google Scholar 

  82. Baxter NT, Schmidt AW, Venkataraman A, et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio. 2019;10:e02566–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tolhurst G, Heron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McNabney, S.M.; Henagan, T.M. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 2017, 9.

  85. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.

    Article  CAS  PubMed  Google Scholar 

  86. De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut brain neural circuits. Cell. 2014;156:84–96.

    Article  CAS  PubMed  Google Scholar 

  87. Smits LP, Kootte RS, Levin E, Prodan A, Fuentes S, Zoetendal EG, Wang Z, Levison B, Cleophas MCP, Kemper EM et al. Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-n-oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc 2018, 7.

  88. Petersen C, Bell R, Klag KA, et al. T cell–mediated regulation of the microbiota protects against obesity. Science. 2019;365:eaat9351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kootte RS, Levin E, Salojarvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611–9.

    Article  CAS  PubMed  Google Scholar 

  90. Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–35.

    Article  CAS  PubMed  Google Scholar 

  91. Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36.

    Article  CAS  PubMed  Google Scholar 

  92. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.

    Article  CAS  PubMed  Google Scholar 

  93. Lynch KE, Parke EC, O’Malley MA. How causal are microbiomes? A comparison with the Helicobacter pylori explanation of ulcers. Bioi. Philos. 2019, pitt philsci, 15777.

  94. Armour CR, Nayfach S, Pollard KS, Sharpton Tj. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems 2019,4.

  95. Vrieze A et al. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia. 2010;53(4):606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos K. Stefanou.

Ethics declarations

The authors declare that they have no conflict of interest.

Informed consent was obtained from all individual participants included in the study.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koulas, S.G., Stefanou, C.K., Stefanou, S.K. et al. Gut Microbiota in Patients with Morbid Obesity Before and After Bariatric Surgery: a Ten-Year Review Study (2009–2019). OBES SURG 31, 317–326 (2021). https://doi.org/10.1007/s11695-020-05074-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-05074-2

Keywords

Navigation