Skip to main content
Log in

Improvements in Heart Rate Variability in Women with Obesity: Short-term Effects of Sleeve Gastrectomy

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Purpose

Obesity has been associated with reduced vagal function and increased sympathetic activity. Cardiac autonomic dysfunction has emerged as a major risk factor in the development of cardiovascular disease. Cardiac autonomic function (CAF) can be assessed by heart rate variability (HRV), an independent predictor of mortality based on changes in time intervals between adjacent heartbeats (RR). Bariatric surgery is considered the most effective treatment for obesity and its comorbidities, with sleeve gastrectomy (SG) being the most frequent bariatric procedure. There are few studies on HRV changes in women with obesity after SG. The aim of this study was to evaluate the short-term impact of SG on CAF and its relationship with weight loss.

Materials and Methods

An observational cohort study was conducted. Twenty-three female patients were assessed before SG and at 1 and 3 months after surgery. CAF was evaluated by analyzing HRV from 5-min records of RR intervals while the subject was supine. HRV was analyzed in time and frequency domains and with a nonlinear method.

Results

Patients (36.0 ± 11.1 years old, BMI 35.1 ± 3.4 kg/m2) presented higher HRV values, on average, in all domains both at 1 and 3 months after SG (p < 0.05). In addition, all anthropometric parameters improved (p < 0.001) although there was no relationship between HRV improvements and anthropometric changes.

Conclusion

SG seems to be effective at reducing excess weight and improving HRV at the short term, and these changes are detectable as early as the first month after surgery. HRV assessment appears as a promising low-cost tool that deserves further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization. Obesity and overweight. [Internet]. [cited 2020 Feb 12]. Available from: www.who.int/mediacentre/factsheets/fs311/en/

  2. Inoue Y, Qin B, Poti J, et al. Epidemiology of obesity in adults: latest trends. Curr Obes Rep. 2018;7(4):276–88. https://doi.org/10.1007/s13679-018-0317-8.

    Article  PubMed  Google Scholar 

  3. Garcia M, Mulvagh SL, Merz CN, et al. Cardiovascular disease in women: clinical perspectives. Circ Res. 2016;118(8):1273–93. https://doi.org/10.1161/CIRCRESAHA.116.307547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams EP, Mesidor M, Winters K, et al. Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep. 2015;4(3):363–70. https://doi.org/10.1007/s13679-015-0169-4.

    Article  PubMed  Google Scholar 

  5. Mandviwala T, Khalid U, Deswal A. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep. 2016;18(5):21. https://doi.org/10.1007/s11883-016-0575-4.

    Article  CAS  PubMed  Google Scholar 

  6. Pareek M, Bhatt DL, Schiavon CA, et al. Metabolic surgery for hypertension in patients with obesity. Circ Res. 2019;124(7):1009–24. https://doi.org/10.1161/CIRCRESAHA.118.313320.

    Article  CAS  PubMed  Google Scholar 

  7. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27. https://doi.org/10.1056/NEJMoa1614362.

    Article  Google Scholar 

  8. Lavie CJ, De Schutter A, Parto P, et al. Obesity and prevalence of cardiovascular diseases and prognosis—the obesity paradox updated. Prog Cardiovasc Dis. 2016;58(5):537–47. https://doi.org/10.1016/j.pcad.2016.01.008.

    Article  PubMed  Google Scholar 

  9. Alpert M, Omran J, Mehra A, et al. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog Cardiovasc Dis. 2014;56(4):391–400. https://doi.org/10.1016/j.pcad.2013.09.003.

    Article  PubMed  Google Scholar 

  10. Wijngaarden MA, Pijl H, van Dijk KW, et al. Obesity is associated with an altered autonomic nervous system response to nutrient restriction. Clin Endocrinol. 2013;79(5):648–51. https://doi.org/10.1111/cen.12100.

    Article  CAS  Google Scholar 

  11. Straznicky NE, Lambert GW, Lambert EA. Neuroadrenergic dysfunction in obesity: an overview of the effects of weight loss. Curr Opin Lipidol. 2010;21(1):21–30. https://doi.org/10.1097/MOL.0b013e3283329c62.

    Article  CAS  PubMed  Google Scholar 

  12. Guarino D, Nannipieri M, Iervasi G, et al. The role of the autonomic nervous system in the pathophysiology of obesity. Front Psychol. 2017;8:665. https://doi.org/10.3389/fphys.2017.00665.

    Article  Google Scholar 

  13. Triggiani AI, Valenzano A, Ciliberti MA, et al. Heart rate variability is reduced in underweight and overweight healthy adult women. Clin Physiol Funct Imaging. 2017;37(2):162–7. https://doi.org/10.1111/cpf.12281.

    Article  PubMed  Google Scholar 

  14. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol. 2014;5:1040. https://doi.org/10.3389/fpsyg.2014.01040.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xhyheri B, Manfrini O, Mazzolini M, et al. Heart rate variability today. Prog Cardiovasc Dis. 2012;55(3):321–31. https://doi.org/10.1016/j.pcad.2012.09.001.

    Article  PubMed  Google Scholar 

  16. Vigo DE, Siri LN, Cardinali DP. Heart rate variability: a tool to explore autonomic nervous system activity in health and disease. In: Gargiulo P, Mesones Arroyo H, editors. Psychiatry and neuroscience update. Cham: Springer; 2019. p. 113–26.

    Chapter  Google Scholar 

  17. Rahman S, Habel M, Contrada RJ. Poincaré plot indices as measures of sympathetic cardiac regulation: responses to psychological stress and associations with pre-ejection period. Int J Psychophysiol. 2018;133:79–90. https://doi.org/10.1016/j.ijpsycho.2018.08.005.

    Article  PubMed  Google Scholar 

  18. Kubičková A, Kozumplík J, Nováková Z, et al. Heart rate variability analysed by Poincaré plot in patients with metabolic syndrome. J Electrocardiol. 2016;49(1):23–8. https://doi.org/10.1016/j.jelectrocard.2015.11.004.

    Article  PubMed  Google Scholar 

  19. Task Force of the European Society of Cardiology and the North American Society of Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation and clinical use. Eur Heart J. 1996;17(3):354–81.

    Article  Google Scholar 

  20. Ziegler D, Zentai CP, Perz S, et al. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31(3):556–61. https://doi.org/10.2337/dc07-1615.

    Article  PubMed  Google Scholar 

  21. Koko KR, McCauley BD, Gaughan JP, et al. Spectral analysis of heart rate variability predicts mortality and instability from vascular injury. J Surg Res. 2018;224:64–71. https://doi.org/10.1016/j.jss.2017.11.029.

    Article  PubMed  Google Scholar 

  22. Sessa F, Anna V, Messina G, et al. Heart rate variability as predictive factor for sudden cardiac death. Aging. 2018;10(2):166–77. https://doi.org/10.18632/aging.101386.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258. https://doi.org/10.3389/fpubh.2017.00258.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wulsin LR, Horn PS, Perry JL, et al. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J Clin Endocrinol Metab. 2015;100(6):2443–8. https://doi.org/10.1210/jc.2015-1748.

    Article  CAS  PubMed  Google Scholar 

  25. Rajendra Acharya U, Paul Joseph K, Kannathal N, et al. Heart rate variability: a review. Med Biol Eng Comput. 2006;44(12):1031–51. https://doi.org/10.1007/s11517-006-0119-0.

    Article  CAS  PubMed  Google Scholar 

  26. Sabbag A, Sidi Y, Kivity S, et al. Obesity and exercise-induced ectopic ventricular arrhythmias in apparently healthy middle aged adults. Eur J Prev Cardiol. 2016;23(5):511–7. https://doi.org/10.1177/2047487315591442.

    Article  PubMed  Google Scholar 

  27. Adabag S, Huxley RR, Lopez FL, et al. Obesity related risk of sudden cardiac death in the atherosclerosis risk in communities study. Heart. 2015;101(3):215–21. https://doi.org/10.1136/heartjnl-2014-306238.

    Article  CAS  PubMed  Google Scholar 

  28. Chiuve SE, Sun Q, Sandhu RK, et al. Adiposity throughout adulthood and risk of sudden cardiac death in women. JACC Clin Electrophysiol. 2015;1(6):520–8. https://doi.org/10.1016/j.jacep.2015.07.011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Montesi L, El Ghoch M, Brodosi L, et al. Long-term weight loss maintenance for obesity: a multidisciplinary approach. Diabetes Metab Syndr Obes. 2016;9:37–46. https://doi.org/10.2147/DMSO.S89836.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Angrisani L, Santonicola A, Iovino P, et al. IFSO Worldwide Survey 2016: primary, endoluminal, and revisional procedures. Obes Surg. 2018;28(12):3783–94. https://doi.org/10.1007/s11695-018-3450-2.

    Article  PubMed  Google Scholar 

  31. Welbourn R, Pournaras DJ, Dixon J, et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the second IFSO Global Registry Report 2013–2015. Obes Surg. 2018;28(2):313–22. https://doi.org/10.1007/s11695-017-2845-9.

    Article  PubMed  Google Scholar 

  32. Jakobsen GS, Småstuen MC, Sandbu R, et al. Association of bariatric surgery vs medical obesity treatment with long-term medical complications and obesity-related comorbidities. JAMA. 2018;319(3):291–301. https://doi.org/10.1001/jama.2017.21055.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol. 2017;14(3):160–9. https://doi.org/10.1038/nrgastro.2016.170.

    Article  PubMed  Google Scholar 

  34. Yu J, Zhou X, Li L, et al. The long-term effects of bariatric surgery for type 2 diabetes: systematic review and meta-analysis of randomized and non-randomized evidence. Obes Surg. 2015;25(1):143–58. https://doi.org/10.1007/s11695-014-1460-2.

    Article  PubMed  Google Scholar 

  35. Bower G, Toma T, Harling L, et al. Bariatric surgery and non-alcoholic fatty liver disease: a systematic review of liver biochemistry and histology. Obes Surg. 2015;25(12):2280–9. https://doi.org/10.1007/s11695-015-1691-x.

    Article  PubMed  Google Scholar 

  36. Kokkinos A, Alexiadou K, Liaskos C, et al. Improvement in cardiovascular indices after Roux-en-Y gastric bypass or sleeve gastrectomy for morbid obesity. Obes Surg. 2013;23(1):31–8. https://doi.org/10.1007/s11695-012-0743-8.

    Article  PubMed  Google Scholar 

  37. Snyder-Marlow G, Taylor D, Lenhard MJ. Nutrition care for patients undergoing laparoscopic sleeve gastrectomy for weight loss. J Am Diet Assoc. 2010;110(4):600–7. https://doi.org/10.1016/j.jada.2009.12.022.

    Article  PubMed  Google Scholar 

  38. Redberg RF, Benjamin EJ, Bittner V, et al. AHA/ACCF 2009 performance measures for primary prevention of cardiovascular disease in adults. Circulation. 2009;120(13):1296–336. https://doi.org/10.1161/CIRCULATIONAHA.109.192617.

    Article  PubMed  Google Scholar 

  39. Brethauer SA, Kim J, El Chaar M, et al. Standardized outcomes reporting in metabolic and bariatric surgery. Obes Surg. 2015;25(4):587–606. https://doi.org/10.1016/j.soard.2015.02.003.

    Article  PubMed  Google Scholar 

  40. Barbosa MP, da Silva NT, de Azevedo FM, et al. Comparison of Polar® RS800G3™ heart rate monitor with Polar® S810i™ and electrocardiogram to obtain the series of RR intervals and analysis of heart rate variability at rest. Clin Physiol Funct Imaging. 2016;36(2):112–7. https://doi.org/10.1111/cpf.12203.

    Article  PubMed  Google Scholar 

  41. Hernando D, Garatachea N, Almeida R, et al. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J Strength Cond Res. 2018;32(3):716–25. https://doi.org/10.1519/jsc.0000000000001662.

    Article  PubMed  Google Scholar 

  42. Williams DP, Jarczok MN, Ellis RJ, et al. Two-week test-retest reliability of the Polar® RS800CX™ to record heart rate variability. Clin Physiol Funct Imaging. 2017;37(6):776–81. https://doi.org/10.1111/cpf.12321.

    Article  PubMed  Google Scholar 

  43. Gisselman AS, D’Amico M, Smoliga JM. Optimizing inter-session reliability of heart rate variability – the effects of artefact correction and breathing type. J Strength Cond Res. 2017:1. https://doi.org/10.1519/JSC.0000000000002258.

  44. Tarvainen MP, Niskanen JP, Lipponen JA, et al. Kubios HRV—heart rate variability analysis software. Comput Methods Prog Biomed. 2014;113(1):210–20. https://doi.org/10.1016/j.cmpb.2013.07.024.

    Article  Google Scholar 

  45. Kissler HJ, Settmacher U. Bariatric surgery to treat obesity. Semin Nephrol. 2013;33(1):75–89. https://doi.org/10.1016/j.semnephrol.2012.12.004.

    Article  PubMed  Google Scholar 

  46. Casellini CM, Parson HK, Hodges K, et al. Bariatric surgery restores cardiac and sudomotor autonomic C-fiber dysfunction towards normal in obese subjects with type 2 diabetes. PLoS One. 2016;11(5):e0154211. https://doi.org/10.1371/journal.pone.0154211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu JM, Yu HJ, Lai HS, et al. Improvement of heart rate variability after decreased insulin resistance after sleeve gastrectomy for morbidly obesity patients. Surg Obes Relat Dis. 2015;11(3):557–63. https://doi.org/10.1016/j.soard.2014.09.011.

    Article  PubMed  Google Scholar 

  48. Poirier P, Hernandez TL, Weil KM, et al. Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes Res. 2003;11(9):1040–7. https://doi.org/10.1038/oby.2003.143.

    Article  PubMed  Google Scholar 

  49. Straznicky NE, Lambert EA, Lambert GW, et al. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metab. 2005;90(11):5998–6005. https://doi.org/10.1210/jc.2005-0961.

    Article  CAS  PubMed  Google Scholar 

  50. Rosenbaum M, Hirsch J, Murphy E, et al. Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr. 2000;71(6):1421–32. https://doi.org/10.1093/ajcn/71.6.1421.

    Article  CAS  PubMed  Google Scholar 

  51. Bettini S, Bordigato E, Fabris R, et al. Modifications of resting energy expenditure after sleeve gastrectomy. Obes Surg. 2018;28(8):2481–6. https://doi.org/10.1007/s11695-018-3190-3.

    Article  PubMed  Google Scholar 

  52. Olshansky B, Sabbah HN, Hauptman PJ, et al. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008;118(8):863–71. https://doi.org/10.1161/CIRCULATIONAHA.107.760405.

    Article  PubMed  Google Scholar 

  53. Guiraud T, Labrunee M, Gaucher-Cazalis K, et al. High-intensity interval exercise improves vagal tone and decreases arrhythmias in chronic heart failure. Med Sci Sports Exerc. 2013;45(10):1861–7. https://doi.org/10.1249/MSS.0b013e3182967559.

    Article  PubMed  Google Scholar 

  54. Dimova R, Tankova T, Chakarova N, et al. Cardiovascular autonomic tone relation to metabolic parameters and hsCRP in normoglycemia and prediabetes. Diabetes Res Clin Pract. 2015;109(2):262–70. https://doi.org/10.1016/j.diabres.2015.05.024.

    Article  CAS  PubMed  Google Scholar 

  55. Leung M, Xie M, Durmush E, et al. Weight loss with sleeve gastrectomy in obese type 2 diabetes mellitus: impact on cardiac function. Obes Surg. 2016;26(2):321–6. https://doi.org/10.1007/s11695-015-1748-x.

    Article  PubMed  Google Scholar 

  56. Cavarretta E, Casella G, Calì B, et al. Cardiac remodeling in obese patients after laparoscopic sleeve gastrectomy. World J Surg. 2013;37(3):565–72. https://doi.org/10.1007/s00268-012-1874-8.

    Article  PubMed  Google Scholar 

  57. Geronikolou SA, Albanopoulos K, Chrousos G, et al. Evaluating the homeostasis assessment model insulin resistance and the cardiac autonomic system in bariatric surgery patients: a meta-analysis. Adv Exp Med Biol. 2017;988:249–59. https://doi.org/10.1007/978-3-319-56246-9_20.

    Article  PubMed  Google Scholar 

  58. Castello V, Simões RP, Bassi D, et al. Impact of aerobic exercise training on heart rate variability and functional capacity in obese women after gastric bypass surgery. Obes Surg. 2011;21(11):1739–49. https://doi.org/10.1007/s11695-010-0319-4.

    Article  PubMed  Google Scholar 

  59. Bobbioni-Harsch E, Sztajzel J, Barthassat V, et al. Independent evolution of heart autonomic function and insulin sensitivity during weight loss. Obesity. 2009;17(2):247–53. https://doi.org/10.1038/oby.2008.532.

    Article  CAS  PubMed  Google Scholar 

  60. Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev. 2016;64:288–310. https://doi.org/10.1016/j.neubiorev.2016.03.007.

    Article  PubMed  Google Scholar 

  61. Lodder AF, Kamath MV, Armstrong D, et al. Bariatric surgery and its effects on heart rate variability. In: Kamath MV, Watanabe MA, Upton ARM, editors. Heart Rate variability (HRV) signal analysis. Clinical Applications. Boca Raton: CRC Press; 2013. p. 279–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Cano-Cappellacci.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (registered number 149-2014) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no competing interests.

Informed/Written Consent

Informed consent was approved by the institutional research ethics committee and was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibacache, P., Cárcamo, P., Miranda, C. et al. Improvements in Heart Rate Variability in Women with Obesity: Short-term Effects of Sleeve Gastrectomy. OBES SURG 30, 4038–4045 (2020). https://doi.org/10.1007/s11695-020-04721-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-04721-y

Keywords

Navigation