Skip to main content

Advertisement

Log in

Legend of Weight Loss: a Crosstalk Between the Bariatric Surgery and the Brain

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

In recent years, plenty of researches have reported in obese individuals with abnormal brain processes implicated in homeostatic regulation, reward, emotion, memory, attention, and executive function in eating behaviors. Thus, treating obesity cannot remain “brainless.” Behavioral and psychological interventions activate the food reward, attention, and motivation system, leading to minimal weight loss and high relapse rates. Pharmacotherapy is an effective weight loss method and regulate brain activity but with concerns about its brain function safety problems. Obesity surgery, the most effective therapy currently available for obesity, shows pronounced effects on brain activity, such as deactivation of reward and attention system, and activation of inhibition control toward food cues. In this review, we present an overview of alterations in the brain after the three common weight loss methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franz MJ, VanWormer JJ, Crain AL, et al. Weight-loss outcomes: a systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J Am Diet Assoc. 2007 Oct;107(10):1755–67.

    Article  PubMed  Google Scholar 

  2. Wolfenden L, Ezzati M, Larijani B, et al. The challenge for global health systems in preventing and managing obesity. Obes Rev. 2019;

  3. Reilly JJ, Hughes AR, Gillespie J, et al. Physical activity interventions in early life aimed at reducing later risk of obesity and related non-communicable diseases: a rapid review of systematic reviews. Obes Rev. 2019;20(Suppl 1):61–73.

    Article  PubMed  Google Scholar 

  4. Murdaugh DL, Cox JE, Cook 3rd EW, et al. fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. NeuroImage. 2012;59(3):2709–21.

    Article  PubMed  Google Scholar 

  5. Fuentes Artiles R, Staub K, Aldakak L, et al. Mindful eating and common diet programs lower body weight similarly: systematic review and meta-analysis. Obes Rev. 2019;1

  6. Krentz AJ, Fujioka K, Hompesch M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab. 2016 Jun;18(6):558–70.

    Article  CAS  PubMed  Google Scholar 

  7. Sjostrom L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.

    Article  CAS  PubMed  Google Scholar 

  8. Mikkelsen KH, Allin KH, Knop FK. Effect of antibiotics on gut microbiota, glucose metabolism and body weight regulation: a review of the literature. Diabetes Obes Metab. 2016;18(5):444–53. Epub 2016/01/29

    Article  CAS  PubMed  Google Scholar 

  9. Yao J, He Z, Chen Y, et al. Acupuncture and weight loss in Asians: a PRISMA-compliant systematic review and meta-analysis. Medicine. 2019;98(33):e16815.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Farr OM, Li CS, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging. Metabolism. 2016;65(5):699–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stice E, Burger K, Yokum S. Caloric deprivation increases responsivity of attention and reward brain regions to intake, anticipated intake, and images of palatable foods. NeuroImage. 2013;67:322–30.

    Article  PubMed  Google Scholar 

  12. Coulter AA, Rebello CJ, Greenway FL. Centrally acting agents for obesity: past, present, and future. Drugs. 2018;78(11):1113–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baboumian S, Pantazatos SP, Kothari S, et al. Functional magnetic resonance imaging (fMRI) neural responses to visual and auditory food stimuli pre and post Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). Neuroscience. 2019;12

  14. O'Brien PE, McPhail T, Chaston TB, et al. Systematic review of medium-term weight loss after bariatric operations. Obes Surg. 2006;16(8):1032–40.

    Article  PubMed  Google Scholar 

  15. Schwartz MW, Porte Jr D. Diabetes, obesity, and the brain. Science. 2005;307(5708):375–9.

    Article  CAS  PubMed  Google Scholar 

  16. Benoit SC, Air EL, Coolen LM, et al. The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci. 2002;22(20):9048–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choudhury AI, Heffron H, Smith MA, et al. The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest. 2005;115(4):940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cowley MA, Smart JL, Rubinstein M, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411(6836):480–4.

    Article  CAS  PubMed  Google Scholar 

  19. Zigman JM, Bouret SG, Andrews ZB. Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol Metab. 2016;27(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  20. Maniscalco JW, Zheng H, Gordon PJ, et al. Negative energy balance blocks neural and behavioral responses to acute stress by “silencing” central glucagon-like peptide 1 signaling in rats. J Neurosci. 2015;35(30):10701–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Bloemendaal L, Veltman DJ, ten Kulve JS, et al. Emotional eating is associated with increased brain responses to food-cues and reduced sensitivity to GLP-1 receptor activation. Obesity (Silver Spring). 2015;23(10):2075–82.

    Article  CAS  Google Scholar 

  22. Skow MA, Bergmann NC, Knop FK. Diabetes and obesity treatment based on dual incretin receptor activation: ‘twincretins’. Diabetes Obes Metab. 2016;18(9):847–54.

    Article  CAS  PubMed  Google Scholar 

  23. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012;55(9):2319–26.

    Article  CAS  PubMed  Google Scholar 

  24. Bostrom PA, Fernandez-Real JM, Mantzoros C. Irisin in humans: recent advances and questions for future research. Metabolism. 2014;63(2):178–80.

    Article  CAS  PubMed  Google Scholar 

  25. Garcia-Garcia I, Horstmann A, Jurado MA, et al. Reward processing in obesity, substance addiction and non-substance addiction. Obes Rev. 2014;15(11):853–69.

    Article  CAS  PubMed  Google Scholar 

  26. DiLeone RJ, Taylor JR, Picciotto MR. The drive to eat: comparisons and distinctions between mechanisms of food reward and drug addiction. Nat Neurosci. 2012;15(10):1330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ziauddeen H, Alonso-Alonso M, Hill JO, et al. Obesity and the neurocognitive basis of food reward and the control of intake. Adv Nutr. 2015;6(4):474–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Volkow ND, Wang GJ, Tomasi D, et al. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14(1):2–18.

    Article  CAS  PubMed  Google Scholar 

  29. Stice E, Spoor S, Bohon C, et al. Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol. 2008;117(4):924–35.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stice E, Yokum S, Bohon C, et al. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. NeuroImage. 2010;50(4):1618–25.

    Article  CAS  PubMed  Google Scholar 

  31. Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet. 2001;357(9253):354–7.

    Article  CAS  PubMed  Google Scholar 

  32. Volkow ND, Wang GJ, Telang F, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage. 2008;42(4):1537–43.

    Article  PubMed  Google Scholar 

  33. Gluck ME, Viswanath P, Stinson EJ. Obesity, appetite, and the prefrontal cortex. Curr Obes Rep. 2017;6(4):380–8.

    Article  PubMed  Google Scholar 

  34. Kullmann S, Heni M, Veit R, et al. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care. 2015;38(6):1044–50.

    Article  CAS  PubMed  Google Scholar 

  35. Reyes S, Peirano P, Peigneux P, et al. Inhibitory control in otherwise healthy overweight 10-year-old children. Int J Obes. 2015;39(8):1230–5.

    Article  CAS  Google Scholar 

  36. Levitan RD, Rivera J, Silveira PP, et al. Gender differences in the association between stop-signal reaction times, body mass indices and/or spontaneous food intake in pre-school children: an early model of compromised inhibitory control and obesity. Int J Obes. 2015;39(4):614–9.

    Article  CAS  Google Scholar 

  37. Nederkoorn C, Jansen E, Mulkens S, et al. Impulsivity predicts treatment outcome in obese children. Behav Res Ther. 2007;45(5):1071–5.

    Article  PubMed  Google Scholar 

  38. Doolan KJ, Breslin G, Hanna D, et al. Attentional bias to food-related visual cues: is there a role in obesity? Proc Nutr Soc. 2015;74(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  39. Macht M. Characteristics of eating in anger, fear, sadness and joy. Appetite. 1999;33(1):129–39.

    Article  CAS  PubMed  Google Scholar 

  40. O'Doherty JP, Deichmann R, Critchley HD, et al. Neural responses during anticipation of a primary taste reward. Neuron. 2002;33(5):815–26.

    Article  CAS  PubMed  Google Scholar 

  41. Mehta S, Melhorn SJ, Smeraglio A, et al. Regional brain response to visual food cues is a marker of satiety that predicts food choice. Am J Clin Nutr. 2012;96(5):989–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang GJ, Yang J, Volkow ND, et al. Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proc Natl Acad Sci U S A. 2006;103(42):15641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin AA, Davidson TL. Human cognitive function and the obesogenic environment. Physiol Behav. 2014;136:185–93.

    Article  CAS  PubMed  Google Scholar 

  44. Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol. 2014;306(10):R701–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loprinzi PD, Frith E. Obesity and episodic memory function. J Physiol Sci. 2018;68(4):321–31.

    Article  PubMed  Google Scholar 

  46. Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.

    Article  CAS  PubMed  Google Scholar 

  47. Prada PO, Zecchin HG, Gasparetti AL, et al. Western diet modulates insulin signaling, c-Jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology. 2005;146(3):1576–87.

    Article  CAS  PubMed  Google Scholar 

  48. De Souza CT, Araujo EP, Bordin S, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.

    Article  PubMed  CAS  Google Scholar 

  49. Clegg DJ, Gotoh K, Kemp C, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103(1):10–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jais A, Bruning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest. 2017;127(1):24–32.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Romanatto T, Cesquini M, Amaral ME, et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient--effects on leptin and insulin signaling pathways. Peptides. 2007;28(5):1050–8.

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Tang Y, Cai D. IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14(10):999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chun SK, Jo YH. Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition. J Neurophysiol. 2010;104(5):2321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andre C, Dinel AL, Ferreira G, et al. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav Immun. 2014;41:10–21.

    Article  CAS  PubMed  Google Scholar 

  55. Sobesky JL, Barrientos RM, De May HS, et al. High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1beta, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun. 2014;42:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011 Sep 9;333(6048):1456–8.

    Article  CAS  PubMed  Google Scholar 

  57. Banks WA. Peptides and the blood-brain barrier. Peptides. 2015;72:16–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Banks WA. The blood-brain barrier as an endocrine tissue. Nat Rev Endocrinol. 2019;15(8):444–55.

    Article  CAS  PubMed  Google Scholar 

  59. Rhea EM, Salameh TS, Logsdon AF, et al. Blood-brain barriers in obesity. AAPS J. 2017;19(4):921–30.

    Article  CAS  PubMed  Google Scholar 

  60. Ouyang S, Hsuchou H, Kastin AJ, et al. Diet-induced obesity suppresses expression of many proteins at the blood-brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  61. Karmi A, Iozzo P, Viljanen A, et al. Increased brain fatty acid uptake in metabolic syndrome. Diabetes. 2010;59(9):2171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andela S, Burrows TL, Baur LA, et al. Efficacy of very low-energy diet programs for weight loss: a systematic review with meta-analysis of intervention studies in children and adolescents with obesity. Obes Rev. 2019;20(6):871–82.

    Article  PubMed  Google Scholar 

  63. Astbury NM, Piernas C, Hartmann-Boyce J, et al. A systematic review and meta-analysis of the effectiveness of meal replacements for weight loss. Obes Rev. 2019;20(4):569–87.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yen HY, Chiu HL. The effectiveness of wearable technologies as physical activity interventions in weight control: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2019;20(10):1485–93.

    Article  PubMed  Google Scholar 

  65. Seo YG, Noh HM, Kim SY. Weight loss effects of circuit training interventions: a systematic review and meta-analysis. Obes Rev. 2019;19

  66. Yang Y, Shields GS, Wu Q, et al. Cognitive training on eating behaviour and weight loss: a meta-analysis and systematic review. Obes Rev. 2019;28

  67. Prehn K, Jumpertz von Schwartzenberg R, Mai K, et al. Caloric restriction in older adults-differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex. 2017;27(3):1765–78.

    PubMed  Google Scholar 

  68. Michel S, Raab R, Drabsch T, et al. Do lifestyle interventions during pregnancy have the potential to reduce long-term postpartum weight retention? A systematic review and meta-analysis. Obes Rev. 2019;20(4):527–42.

    PubMed  Google Scholar 

  69. Neumark-Sztainer D, Wall M, Guo J, et al. Obesity, disordered eating, and eating disorders in a longitudinal study of adolescents: how do dieters fare 5 years later? J Am Diet Assoc. 2006;106(4):559–68.

    Article  PubMed  Google Scholar 

  70. Stice E, Davis K, Miller NP, et al. Fasting increases risk for onset of binge eating and bulimic pathology: a 5-year prospective study. J Abnorm Psychol. 2008;117(4):941–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Doucet E, McInis K, Mahmoodianfard S. Compensation in response to energy deficits induced by exercise or diet. Obes Rev. 2018;19(Suppl 1):36–46.

    Article  PubMed  Google Scholar 

  72. Fuhrer D, Zysset S, Stumvoll M. Brain activity in hunger and satiety: an exploratory visually stimulated FMRI study. Obesity (Silver Spring). 2008;16(5):945–50.

    Article  Google Scholar 

  73. Leidy HJ, Lepping RJ, Savage CR, et al. Neural responses to visual food stimuli after a normal vs. higher protein breakfast in breakfast-skipping teens: a pilot fMRI study. Obesity (Silver Spring). 2011;19(10):2019–25.

    Article  CAS  Google Scholar 

  74. Goldstone AP, Prechtl de Hernandez CG, Beaver JD, et al. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci. 2009;30(8):1625–35.

    Article  PubMed  Google Scholar 

  75. McDermott KD, Williams SE, Espeland MA, et al. Impact of intensive lifestyle intervention on neural food cue reactivity: action for health in diabetes brain ancillary study. Obesity (Silver Spring). 2019;27(7):1076–84.

    PubMed Central  Google Scholar 

  76. Dong Z, Xu L, Liu H, et al. Comparative efficacy of five long-term weight loss drugs: quantitative information for medication guidelines. Obes Rev. 2017;18(12):1377–85.

    Article  CAS  PubMed  Google Scholar 

  77. Farr OM, Sofopoulos M, Tsoukas MA, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):954–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Bloemendaal L, Ten Kulve JS, la Fleur SE, et al. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol. 2014;221(1):T1–16.

    Article  PubMed  CAS  Google Scholar 

  79. Wadden TA, Hollander P, Klein S, et al. Weight maintenance and additional weight loss with liraglutide after low-calorie-diet-induced weight loss: the SCALE maintenance randomized study. Int J Obes. 2013;37(11):1443–51.

    Article  CAS  Google Scholar 

  80. Davies MJ, Bergenstal R, Bode B, et al. Efficacy of Liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99.

    Article  CAS  PubMed  Google Scholar 

  81. Greenway FL, Fujioka K, Plodkowski RA, et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2010;376(9741):595–605.

    Article  CAS  PubMed  Google Scholar 

  82. Apovian CM, Aronne L, Rubino D, et al. A randomized, phase 3 trial of naltrexone SR/bupropion SR on weight and obesity-related risk factors (COR-II). Obesity (Silver Spring). 2013;21(5):935–43.

    Article  CAS  Google Scholar 

  83. Wadden TA, Foreyt JP, Foster GD, et al. Weight loss with naltrexone SR/bupropion SR combination therapy as an adjunct to behavior modification: the COR-BMOD trial. Obesity (Silver Spring). 2011;19(1):110–20.

    Article  CAS  Google Scholar 

  84. Hollander P, Gupta AK, Plodkowski R, et al. Effects of naltrexone sustained-release/bupropion sustained-release combination therapy on body weight and glycemic parameters in overweight and obese patients with type 2 diabetes. Diabetes Care. 2013;36(12):4022–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang GJ, Tomasi D, Volkow ND, et al. Effect of combined naltrexone and bupropion therapy on the brain's reactivity to food cues. Int J Obes. 2014;38(5):682–8.

    Article  CAS  Google Scholar 

  86. Roth BL, Willins DL, Kristiansen K, et al. 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther. 1998;79(3):231–57.

    Article  CAS  PubMed  Google Scholar 

  87. Smith SR, Weissman NJ, Anderson CM, et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N Engl J Med. 2010;363(3):245–56.

    Article  CAS  PubMed  Google Scholar 

  88. Fidler MC, Sanchez M, Raether B, et al. A one-year randomized trial of lorcaserin for weight loss in obese and overweight adults: the BLOSSOM trial. J Clin Endocrinol Metab. 2011 Oct;96(10):3067–77.

    Article  CAS  PubMed  Google Scholar 

  89. O'Neil PM, Smith SR, Weissman NJ, et al. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2 diabetes mellitus: the BLOOM-DM study. Obesity (Silver Spring). 2012;20(7):1426–36.

    Article  CAS  Google Scholar 

  90. Farr OM, Upadhyay J, Gavrieli A, et al. Lorcaserin administration decreases activation of brain centers in response to food cues and these emotion- and salience-related changes correlate with weight loss effects: a 4-week-long randomized, placebo-controlled, double-blind clinical trial. Diabetes. 2016;65(10):2943–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Colman E. Food and Drug Administration's obesity drug guidance document: a short history. Circulation. 2012;125(17):2156–64.

    Article  PubMed  Google Scholar 

  92. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307(1):56–65.

    Article  PubMed  Google Scholar 

  93. Zhu C, Mei F, Gao J, et al. Changes in inflammatory markers correlated with increased testosterone after laparoscopic sleeve gastrectomy in obese Chinese men with acanthosis nigricans. J Dermatol. 2019;46(4):338–42.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang Y, Zhu C, Wen X, et al. Laparoscopic sleeve gastrectomy improves body composition and alleviates insulin resistance in obesity related acanthosis nigricans. Lipids Health Dis. 2017;16(1):209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Gao J, Zhang M, Zhu C, et al. The change in the percent of android and gynoid fat mass correlated with increased testosterone after laparoscopic sleeve gastrectomy in Chinese obese men: a 6-month follow-up. Obes Surg. 2018;28(7):1960–5.

    Article  PubMed  Google Scholar 

  96. Cardoso L, Rodrigues D, Gomes L, et al. Short- and long-term mortality after bariatric surgery: a systematic review and meta-analysis. Diabetes Obes Metab. 2017;19(9):1223–32.

    Article  PubMed  Google Scholar 

  97. Yeo C, Kaushal S, Lim B, et al. Impact of bariatric surgery on serum uric acid levels and the incidence of gout-A meta-analysis. Obes Rev. 2019;

  98. Hansen TT, Jakobsen TA, Nielsen MS, et al. Hedonic changes in food choices following Roux-en-Y gastric bypass. Obes Surg. 2016;26(8):1946–55.

    Article  PubMed  Google Scholar 

  99. Gero D, Dib F, Ribeiro-Parenti L, et al. Desire for Core tastes decreases after sleeve Gastrectomy: a single-center longitudinal observational study with 6-month follow-up. Obes Surg. 2017;27(11):2919–26.

    Article  PubMed  Google Scholar 

  100. Alosco ML, Galioto R, Spitznagel MB, et al. Cognitive function after bariatric surgery: evidence for improvement 3 years after surgery. Am J Surg. 2014;207(6):870–6.

    Article  PubMed  Google Scholar 

  101. Behary P, Miras AD. Food preferences and underlying mechanisms after bariatric surgery. Proc Nutr Soc. 2015;74(4):419–25.

    Article  PubMed  Google Scholar 

  102. Ochner CN, Kwok Y, Conceicao E, et al. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253(3):502–7.

    Article  PubMed  Google Scholar 

  103. Zoon HFA, de Bruijn SEM, Smeets PAM, et al. Altered neural responsivity to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. Behav Brain Res. 2018;353:194–202.

    Article  CAS  PubMed  Google Scholar 

  104. Scholtz S, Miras AD, Chhina N, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902.

    Article  PubMed  Google Scholar 

  105. Frank S, Wilms B, Veit R, et al. Altered brain activity in severely obese women may recover after Roux-en Y gastric bypass surgery. Int J Obes. 2014;38(3):341–8.

    Article  CAS  Google Scholar 

  106. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes - 5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Panagiotou OA, Markozannes G, Adam GP, et al. Comparative effectiveness and safety of bariatric procedures in Medicare-eligible patients: a systematic review. JAMA Surg. 2018;153(11):e183326.

    Article  PubMed  Google Scholar 

  108. Li G, Ji G, Hu Y, et al. Reduced plasma ghrelin concentrations are associated with decreased brain reactivity to food cues after laparoscopic sleeve gastrectomy. Psychoneuroendocrinology. 2019;100:229–36.

    Article  CAS  PubMed  Google Scholar 

  109. Bruce JM, Hancock L, Bruce A, et al. Changes in brain activation to food pictures after adjustable gastric banding. Surg Obes Relat Dis. 2012;8(5):602–8.

    Article  PubMed  Google Scholar 

  110. Mauro M, Papelbaum M, Brasil MAA, et al. Is weight regain after bariatric surgery associated with psychiatric comorbidity? A systematic review and meta-analysis. Obes Rev. 2019;20(10):1413–25.

    Article  PubMed  Google Scholar 

  111. Goldman RL, Canterberry M, Borckardt JJ, et al. Executive control circuitry differentiates degree of success in weight loss following gastric-bypass surgery. Obesity (Silver Spring). 2013;21(11):2189–96.

    Article  Google Scholar 

  112. Li P, Shan H, Liang S, et al. Sleeve gastrectomy recovering disordered brain function in subjects with obesity: a longitudinal fMRI study. Obes Surg. 2018;28(8):2421–8.

    Article  PubMed  Google Scholar 

  113. Li G, Ji G, Hu Y, et al. Bariatric surgery in obese patients reduced resting connectivity of brain regions involved with self-referential processing. Hum Brain Mapp. 2018;39(12):4755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  114. le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–14.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  116. Abdeen G, le Roux CW. Mechanism underlying the weight loss and complications of Roux-en-Y gastric bypass. Rev Obes Surg. 2016;26(2):410–21.

    Article  CAS  Google Scholar 

  117. van de Sande-Lee S, Pereira FR, Cintra DE, et al. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60(6):1699–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gazdzinski SP, Gazdzinska AP, Orzel J, et al. Intragastric balloon therapy leads to normalization of brain magnetic resonance spectroscopic markers of diabetes in morbidly obese patients. NMR Biomed. 2018;31(9):e3957.

    Article  PubMed  CAS  Google Scholar 

  119. Dunn JP, Cowan RL, Volkow ND, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bruce AS, Bruce JM, Ness AR, et al. A comparison of functional brain changes associated with surgical versus behavioral weight loss. Obesity (Silver Spring). 2014;22(2):337–43.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Aaron M Gusdon (University of Texas Health Science Center at Houston) for discussion and critical reading of the manuscript.

Funding

The work was supported by the National Key R&D Program of China (No. 2018YFC1314100), National Natural Science Foundation of China (81970677), and National Natural Science Foundation of China for Youth (81500687).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Qu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement

Does not apply.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Qu, S. Legend of Weight Loss: a Crosstalk Between the Bariatric Surgery and the Brain. OBES SURG 30, 1988–2002 (2020). https://doi.org/10.1007/s11695-020-04474-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-04474-8

Keywords

Navigation