Skip to main content
Log in

Perioperative Fluid Guidance with Transthoracic Echocardiography and Pulse-Contour Device in Morbidly Obese Patients

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

In bariatric surgery, non- or mini-invasive modalities for cardiovascular monitoring are addressed to meet individual variability in hydration needs. The aim of the study was to compare conventional monitoring to an individualized goal-directed therapy (IGDT) regarding the need of perioperative fluids and cardiovascular stability.

Methods

Fifty morbidly obese patients were consecutively scheduled for laparoscopic bariatric surgery (ClinicalTrials.gov Identifier: NCT01873183). The intervention group (IG, n = 30) was investigated preoperatively with transthoracic echocardiography (TTE) and rehydrated with colloid fluids if a low level of venous return was detected. During surgery, IGDT was continued with a pulse-contour device (FloTrac™). In the control group (CG, n = 20), conventional monitoring was conducted. The type and amount of perioperative fluids infused, vasoactive/inotropic drugs administered, and blood pressure levels were registered.

Results

In the IG, 213 ± 204 mL colloid fluids were administered as preoperative rehydration vs. no preoperative fluids in the CG (p < 0.001). During surgery, there was no difference in the fluids administered between the groups. Mean arterial blood pressures were higher in the IG vs. the CG both after induction of anesthesia and during surgery (p = 0.001 and p = 0.001).

Conclusions

In morbidly obese patients suspected of being hypovolemic, increased cardiovascular stability may be reached by preoperative rehydration. The management of rehydration should be individualized. Additional invasive monitoring does not appear to have any effect on outcomes in obesity surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CI:

Cardiac index

CO:

Cardiac output

IAP:

Intra-abdominal pressure

IGDT:

Individualized goal-directed therapy

IBW:

Ideal body weight

LV:

Left ventricle of the heart

LOS:

Length of hospital stay

MO:

Morbidly obese patients

Nt-proBNP:

N-terminal prohormone of brain natriuretic peptide

OR:

Operating room

PEEP:

Positive end-expiratory pressure

PONV:

Postoperative nausea and vomiting

POP:

Postoperative recovery unit

RV:

Right ventricle of the heart

RAP:

Right atrial pressure

RWL:

Rapid weight loss

SV:

Stroke volume

SVV:

Stroke volume variation

TTE:

Transthoracic echocardiography

VAS:

Visual analog scale

References

  1. Nguyen NT, Wolfe BM. The physiologic effects of pneumoperitoneum in the morbidly obese. Ann Surg. 2005;241(2):219–26.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jain AK, Dutta A. Stroke volume variation as a guide to fluid administration in morbidly obese patients undergoing laparoscopic bariatric surgery. Obes Surg. 2010;20(6):709–15.

    Article  PubMed  Google Scholar 

  3. Perel A, Habicher M, Sander M. Bench-to-bedside review: functional hemodynamics during surgery—should it be used for all high-risk cases? Crit Care. 2013;17(1):203.

    Article  PubMed Central  PubMed  Google Scholar 

  4. O’Neill T, Allam J. Anaesthetic considerations and management of the obese patient presenting for bariatric surgery. Curr Anaesth Crit Care. 2010;21(1):16–23.

    Article  Google Scholar 

  5. Cannesson M. Arterial pressure variation and goal-directed fluid therapy. J Cardiothorac Vasc Anesth. 2010;24(3):487–97.

    Article  PubMed  Google Scholar 

  6. Bundgaard-Nielsen M, Holte K, Secher NH, et al. Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol Scand. 2007;51(3):331–40.

    Article  CAS  PubMed  Google Scholar 

  7. Poso T, Kesek D, Aroch R, et al. Morbid obesity and optimization of preoperative fluid therapy. Obes Surg. 2013;23(11):1799–805.

    Article  PubMed  Google Scholar 

  8. Alpert MA, Lambert CR, Panayiotou H, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function, and diastolic filling, and effect of weight loss. Am J Cardiol. 1995;76(16):1194–7.

    Article  CAS  PubMed  Google Scholar 

  9. Alpert MA, Chan EJ. Left ventricular morphology and diastolic function in severe obesity: current views. Rev Esp Cardiol. 2012;65(1):1–3.

    Article  PubMed  Google Scholar 

  10. Poso T, Kesek D, Aroch R, et al. Rapid weight loss is associated with preoperative hypovolemia in morbidly obese patients. Obes Surg. 2013;23(3):306–13.

    Article  PubMed  Google Scholar 

  11. Lambert DM, Marceau S, Forse RA. Intra-abdominal pressure in the morbidly obese. Obes Surg. 2005;15(9):1225–32.

    Article  PubMed  Google Scholar 

  12. Vivier E, Metton O, Piriou V, et al. Effects of increased intra-abdominal pressure on central circulation. Br J Anaesth. 2006;96(6):701–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ogunnaike BO, Jones SB, Jones DB, et al. Anesthetic considerations for bariatric surgery. Anesth Analg. 2002;95(6):1793–805.

    Article  PubMed  Google Scholar 

  14. The expert group rapport of the national guidelines for bariatric surgery (NIOK), Sweden [Internet]. 2009. Available from: www.sfoak.se/wp-content/niok_2009.pdf.

  15. Adams JP, Murphy PG. Obesity in anaesthesia and intensive care. Br J Anaesth. 2000;85(1):91–108.

    Article  CAS  PubMed  Google Scholar 

  16. Bergland A, Gislason H, Raeder J. Fast-track surgery for bariatric laparoscopic gastric bypass with focus on anaesthesia and peri-operative care. Experience with 500 cases. Acta Anaesthesiol Scand. 2008;52(10):1394–9.

    Article  CAS  PubMed  Google Scholar 

  17. Pfister R, Schneider CA. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: application of natriuretic peptides. Eur Heart J. 2009;30(3):382–3.

    Article  PubMed  Google Scholar 

  18. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109(5):594–600.

    Article  CAS  PubMed  Google Scholar 

  19. Collins JS, Lemmens HJ, Brodsky JB, et al. Laryngoscopy and morbid obesity: a comparison of the “sniff” and “ramped” positions. Obes Surg. 2004;14(9):1171–5.

    Article  PubMed  Google Scholar 

  20. Poso T, Kesek D, Winso O, et al. Volatile rapid sequence induction in morbidly obese patients. Eur J Anaesthesiol. 2011;28(11):781–7.

    Article  PubMed  Google Scholar 

  21. Salihoglu Z, Demiroluk S. Demirkiran, Kose Y. Comparison of effects of remifentanil, alfentanil and fentanyl on cardiovascular responses to tracheal intubation in morbidly obese patients. Eur J Anaesthesiol. 2002;19(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  22. Casati A, Putzu M. Anesthesia in the obese patient: pharmacokinetic considerations. J Clin Anesth. 2005;17(2):134–45.

    Article  CAS  PubMed  Google Scholar 

  23. Pinsky MR. Heart lung interactions during mechanical ventilation. Curr Opin Crit Care. 2012;18(3):256–60.

    Article  PubMed  Google Scholar 

  24. Brennan JM, Blair JE, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20(7):857–61.

    Article  PubMed  Google Scholar 

  25. Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices. 2005;2(5):523–7.

    Article  PubMed  Google Scholar 

  26. Mayer J, Boldt J, Poland R, et al. Continuous arterial pressure waveform-based cardiac output using the FloTrac/Vigileo: a review and meta-analysis. J Cardiothorac Vasc Anesth. 2009;23(3):401–6.

    Article  PubMed  Google Scholar 

  27. Hofer CK, Senn A, Weibel L, et al. Assessment of stroke volume variation for prediction of fluid responsiveness using the modified FloTrac and PiCCOplus system. Crit Care. 2008;12(3):R82.

    Article  PubMed Central  PubMed  Google Scholar 

  28. De Backer D, Marx G, Tan A, et al. Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med. 2011;37(2):233–40.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hoiseth LO, Hoff IE, Myre K, et al. Dynamic variables of fluid responsiveness during pneumoperitoneum and laparoscopic surgery. Acta Anaesthesiol Scand. 2012;56(6):777–86.

    Article  CAS  PubMed  Google Scholar 

  30. Raghunathan K, Bloomstone JA, McGee WT. Cardiac output measured with both esophageal Doppler device and Vigileo-FloTrac device. Anesth Analg. 2012;114(5):1141–2.

    Article  PubMed  Google Scholar 

  31. Meng L, Tran NP, Alexander BS, et al. The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth Analg. 2011;113(4):751–7.

    CAS  PubMed  Google Scholar 

  32. Katkhouda N, Mason RJ, Wu B, et al. Evaluation and treatment of patients with cardiac disease undergoing bariatric surgery. Surg Obes Relat Dis. 2012;8(5):634–40.

    Article  PubMed  Google Scholar 

  33. Pinsky MR. Hemodynamic monitoring over the past 10 years. Crit Care. 2006;10(1):117.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15(2):214.

    Article  PubMed Central  PubMed  Google Scholar 

  35. McLean AS, Huang SJ, Kot M, et al. Comparison of cardiac output measurements in critically ill patients: FloTrac/Vigileo vs transthoracic Doppler echocardiography. Anaesth Intensive Care. 2011;39(4):590–8.

    CAS  PubMed  Google Scholar 

  36. Canty DJ, Royse CF, Kilpatrick D, et al. The impact of focused transthoracic echocardiography in the pre-operative clinic. Anaesthesia. 2012;67(6):618–25.

    Article  CAS  PubMed  Google Scholar 

  37. Boyd JH, Walley KR. The role of echocardiography in hemodynamic monitoring. Curr Opin Crit Care. 2009;15(3):239–43.

    Article  PubMed  Google Scholar 

  38. Ramsingh D, Alexander B, Cannesson M. Clinical review: does it matter which hemodynamic monitoring system is used? Crit Care. C7 - 208. 2013;17(2):1–13.

  39. Fried M, Yumuk V, Oppert JM, et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes Surg. 2014;24(1):42–55.

    Article  CAS  PubMed  Google Scholar 

  40. Chamos C, Vele L, Hamilton M, et al. Less invasive methods of advanced hemodynamic monitoring: principles, devices, and their role in the perioperative hemodynamic optimization. Perioper Med (Lond). 2013;2(1):19.

    Article  Google Scholar 

  41. Janmahasatian S, Duffull SB, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.

    Article  PubMed  Google Scholar 

  42. Ingrande J, Brodsky JB, Lemmens HJ. Lean body weight scalar for the anesthetic induction dose of propofol in morbidly obese subjects. Anesth Analg. 2011;113(1):57–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Norrbotten County Council.

Conflict of Interest

The authors declare that there are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomi Pösö.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pösö, T., Winsö, O., Aroch, R. et al. Perioperative Fluid Guidance with Transthoracic Echocardiography and Pulse-Contour Device in Morbidly Obese Patients. OBES SURG 24, 2117–2125 (2014). https://doi.org/10.1007/s11695-014-1329-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-014-1329-4

Keywords

Navigation