Skip to main content
Log in

Body Plan Identity: A Mechanistic Model

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

We surmise that the commonality of anatomy among groups sharing a body plan is not merely an incidental sharing of descriptive features, but rather, that those features are the component parts of a deeply integrated shared pattern of development.

—Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form (p. 31). University of Chicago Press.

Abstract

A body plan is a stable configuration of characters for a major taxonomic group, such as chordates or arthropods. Despite widespread casual reliance on the concept for guiding comparisons within and between groups, the nature of body plans as well as the biological causes underlying their evolution have remained elusive. This paper proposes an abstract mechanistic model of body plan identity. We hypothesize that body plans are an evolutionary phenomenon that only applies to a relatively small subset of major clades, rather than being associated with each and every so-called “phylum.” Body plans arise in evolution by stepwise accretion, and require a level of developmental complexity that is only found in some animal clades. Further, we suggest that, parallel to the developmental mechanisms controlling character identity, there are “body plan identity mechanisms” (BpIMs) that maintain entire configurations of characters while possessing a mechanistic architecture that is itself stable and traceable through evolutionary change. These BpIMs, we suggest, are entrenched intercellular signaling networks operating between transient embryonic structures that are destined to differentiate into distinct individualized characters. The activity of a BpIM results in a transient long-range integration of the embryo that is highly sensitive to genetic and environmental perturbations, and that can be detected morphologically as a conserved phylotypic stage. This model is illustrated with detailed interpretations of the notochord signaling system and the segment polarity network as candidate BpIMs in vertebrates and arthropods, respectively. We conclude by contrasting the proposed developmental-mechanistic conception of body plans with the phylogenetic notion of ground plans, and sketch the general outlines of an empirical research program on body plan evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

NA

Notes

  1. We do not distinguish between concepts of body plan and Bauplan, which we understand to be equivalent.

References

  • Almeida, N., Chung, M. W. H., Drudi, E. M., Engquist, E. N., Hamrud, E., Isaacson, A., Tsang, V. S. K., Watt, F. M., & Spagnoli, F. M. (2021). Employing core regulatory circuits to define cell identity. The EMBO Journal, 40(10), e106785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amundson, R. (2005). The changing role of the embryo in evolutionary thought: Roots of evo-devo. Cambridge University Press.

    Book  Google Scholar 

  • Ando, T., Semba, K., Suda, H., Sei, A., Mizuta, H., Araki, M., Abe, K., Imai, K., Nakagata, N., Araki, K., & Yamamura, K. (2011). The floor plate is sufficient for development of the sclerotome and spine without the notochord. Mechanisms of Development, 128, 129–140.

    Article  CAS  PubMed  Google Scholar 

  • Annona, G., Holland, N. D., & D’Aniello, S. (2015). Evolution of the notochord. EvoDevo, 6, 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arendt, D., Musser, J. M., Baker, C. V. H., Bergman, A., Cepko, C., Erwin, D. H., Pavlicev, M., Schlosser, G., Widder, S., Laubichler, M. D., & Wagner, G. P. (2016). The origin and evolution of cell types. Nature Reviews Genetics, 17(12), 744–757.

    Article  CAS  PubMed  Google Scholar 

  • Arthur, W. (1988). A theory of the evolution of development. Wiley.

    Google Scholar 

  • Artieri, C. G., & Singh, R. S. (2010). Molecular evidence for increased regulatory conservation during metamorphosis, and against deleterious cascading effects of hybrid breakdown in Drosophila. BMC Biology, 8, 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Auman, T., & Chipman, A. D. (2017). The evolution of gene regulatory networks that define arthropod body plans. Integrative and Comparative Biology, 57(3), 523–532.

    Article  PubMed  Google Scholar 

  • Ax, P. (1984). Das phylogenetische system. Gustav Fischer.

    Google Scholar 

  • Babonis, L. S., & Martindale, M. Q. (2016). Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philosophical Transactions of the Royal Society B., 372, 20150477.

    Article  CAS  Google Scholar 

  • Bienz, M. (1997). Endoderm induction in Drosophila: The nuclear targets of the inducing signal. Current Opinion in Genetics & Development, 7, 683–688.

    Article  CAS  Google Scholar 

  • Bishop, C. D., Erezyilmaz, D. F., Flatt, T., Georgiou, C. D., Hadfield, M. G., Heyland, A., Hodin, J., Jacobs, M. W., Maslakova, S. A., Pires, A., Reitzel, A. M., Santagata, S., Tanaka, K., & Youson, J. H. (2006). What is metamorphosis? Integrative and Comparative Biology, 46, 655–661.

    Article  CAS  PubMed  Google Scholar 

  • Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 141–185). MIT Press.

    Google Scholar 

  • Brigandt, I. (2009). Natural kinds in evolution and systematics: Metaphysical and epistemological considerations. Acta Biotheoretica, 57, 77–97.

    Article  PubMed  Google Scholar 

  • Briscoe, J., & Small, S. (2015). Morphogen rules: Design principles of gradient-mediated embryo patterning. Development, 142(23), 3996–4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budd, G. E., & Jensen, S. (2000). A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75, 253–295.

    Article  CAS  PubMed  Google Scholar 

  • Chipman, A. D. (2020). The evolution of the gene regulatory networks patterning the Drosophila Blastoderm. Gene Regulatory NetworksIn I. Peter (Ed.), Current topics in developmental biology (Vol. 139, pp. 297–324)

    Google Scholar 

  • Chipman, A. D., & Edgecombe, G. D. (2019). Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proceedings of the Royal Society B, 286, 20191881.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, E., Peel, A. D., & Akam, M. (2019). Arthropod Segmentation. Development. https://doi.org/10.1242/dev.170480

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleaver, O., & Krieg, P. A. (1998). VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development, 125, 3905–3914.

    Article  CAS  PubMed  Google Scholar 

  • Corallo, D., Trapani, V., & Bonaldo, P. (2015). The notochord: Structure and functions. Cellular and Molecular Life Sciences, 72, 2989–3008.

    Article  CAS  PubMed  Google Scholar 

  • Damen, W. G. M. (2007). Evolutionary conservation and divergence of the segmentation process in arthropods. Developmental Dynamics, 236, 1379–1391.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.

    Article  CAS  PubMed  Google Scholar 

  • De Beer, G. (1954). Embryos and Ancestors (Revised). Oxford University Press.

    Google Scholar 

  • Delsuc, F., Brinkmann, H., Chourrout, D., & Philippe, H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 439, 965–968.

    Article  CAS  PubMed  Google Scholar 

  • Deutsch, J. (2005). Hox and wings. BioEssays, 27(7), 673–675.

    Article  PubMed  Google Scholar 

  • DiFrisco, J., Wagner, G. P., & Love, A. C. (in press). Reframing research on evolutionary novelty and co-option: Character identity mechanisms versus deep homology.

  • DiFrisco, J., & Jaeger, J. (2021). Homology of process: Developmental dynamics in comparative biology. Interface Focus, 11, 20210007.

    Article  PubMed  PubMed Central  Google Scholar 

  • DiFrisco, J., Love, A. C., & Wagner, G. P. (2020). Character identity mechanisms: A conceptual model for comparative-mechanistic biology. Biology & Philosophy, 35(4), 44.

    Article  Google Scholar 

  • Dobzhansky, T. (1950). Human diversity and adaptation. Cold Spring Harbor Symposia on Quantitative Biology, 15, 385–400.

    Article  CAS  PubMed  Google Scholar 

  • Drost, H.-G., Gabel, A., Grosse, I., & Quint, M. (2015). Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Molecular Biology and Evolution, 32(5), 1221–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drost, H.-G., Janitza, P., Grosse, I., & Quint, M. (2017). Cross-kingdom comparison of the developmental hourglass. Current Opinion in Genetics & Development, 45, 69–75.

    Article  CAS  Google Scholar 

  • Duboule, D. (1994). Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development, 120(Supplement), 135–142.

    Article  Google Scholar 

  • Dumont, D. J., Fong, G.-H., Puri, M. C., Gradwohl, G., Alitalo, K., & Breitman, M. L. (1995). Vascularization of the mouse embryo: A study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Developmental Dynamics, 203, 80–92.

    Article  CAS  PubMed  Google Scholar 

  • Ebisuya, M., & Briscoe, J. (2018). What does time mean in development? Development. https://doi.org/10.1242/dev.164368

    Article  PubMed  PubMed Central  Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: Method and theory in comparative biology. Columbia University Press.

    Google Scholar 

  • Elinson, R. P. (1987). Change in developmental patterns: Embryos of amphibians with large eggs. In R. A. Raff & E. C. Raff (Eds.), Development as an evolutionary process (pp. 1–21). Alan R. Liss.

    Google Scholar 

  • Ereshefsky, M. (2012). Homology thinking. Biology & Philosophy, 27, 381–400.

    Article  Google Scholar 

  • Erwin, D. H., Valentine, J. W., & Sepkoski, J. J., Jr. (1987). A comparative study of diversification events: The early Paleozoic versus the Mesozoic. Evolution, 41, 1177–1186.

    Article  CAS  PubMed  Google Scholar 

  • Favarolo, M. B., & López, S. L. (2018). Notch signaling in the division of germ layers in bilaterian embryos. Mechanisms of Development, 154, 122–144.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, A. H., Henrich, T., & Arendt, D. (2010). The normal development of Platynereis dumerilii (Nereididae, Annelida). Frontiers in Zoology, 7, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujimoto, S., Yamanaka, K., Tanegashima, C., Nishimura, O., Kuraku, S., Kuratani, S., & Irie, N. (2022). Measuring potential effects of developmental burden associated with the vertebrate notochord. Journal of Experimental Zoology Part B (molecular and Developmental Evolution), 338, 129–136.

    Article  Google Scholar 

  • Fusco, G., & Minelli, A. (2019). The biology of reproduction. Cambridge University Press.

    Book  Google Scholar 

  • Galis, F., & Metz, J. A. J. (2001). Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. Journal of Experimental Zoology (molecular and Developmental Evolution), 291, 195–204.

    Article  CAS  Google Scholar 

  • Galis, F., van Dooren, T. J. M., & Metz, J. A. J. (2002). Conservation of the segmented germband stage: Robustness or pleiotropy? TRENDS in Genetics, 18(10), 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Ghiselin, M. T. (2005). Homology as a relation of correspondence between parts of individuals. Theory in Biosciences, 124, 91–103.

    Article  PubMed  Google Scholar 

  • Grapin-Botton, A., & Melton, D. A. (2000). Endoderm development from patterning to organogenesis. Trends in Genetics, 16(3), 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, P. E. (1999). Squaring the circle: Natural kinds with historical essences. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 209–228). MIT Press.

    Google Scholar 

  • Gualdi, R., Bossard, P., Zheng, M., Hamada, Y., Coleman, J. R., & Zaret, K. S. (1996). Hepatic specification of the gut endoderm in vitro: Cell signaling and transcriptional control. Genes & Development, 10, 1670–1682.

    Article  CAS  Google Scholar 

  • Haag, E. S., & True, J. R. (2018). Developmental system drift. In L. Nuño de la Rosa & G. B. Müller (Eds.), Evolutionary developmental biology: A reference guide. Springer.

    Google Scholar 

  • Hall, B. (1992). Evolutionary developmental biology (2nd ed.). Chapman and Hall.

    Book  Google Scholar 

  • Hall, B. K. (1995). Homology and embryonic development. In M. K. Hecht, R. J. MacIntyre, & M. T. Clegg (Eds.), Evolutionary biology (Vol. 28, pp. 1–37). Springer.

    Google Scholar 

  • Hazkani-Covo, E., Wool, D., & Grauer, D. (2005). In Search of the vertebrate phylotypic stage: A molecular examination of the developmental hourglass model and von Baer’s third law. Journal of Experimental Zoology Part b: Molecular and Developmental Evolution, 304B, 150–158.

    Article  Google Scholar 

  • Hebrok, M., Kim, S. K., & Melton, D. A. (1998). Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes & Development, 12, 1705–1713.

    Article  CAS  Google Scholar 

  • Hennig, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97–116.

    Article  Google Scholar 

  • Hobert, O. (2008). Regulatory logic of neuronal diversity: Terminal selector genes and selector motifs. Proceedings of the National Academy of Sciences, 105(51), 20067.

    Article  CAS  Google Scholar 

  • Hobert, O. (2011). Regulation of terminal differentiation programs in the nervous system. Annual Review of Cell and Developmental Biology, 27, 681–696.

    Article  CAS  PubMed  Google Scholar 

  • Huber, J. L., da Silva, K. B., Bates, W. R., & Swalla, B. J. (2000). The evolution of anural larvae in molgulid ascidians. Seminars in Cell & Developmental Biology, 11, 419–426.

    Article  CAS  Google Scholar 

  • Hull, D. L. (1967). The metaphysics of evolution. British Journal for the History of Science, 3(4), 309–337.

    Article  Google Scholar 

  • Hull, D. L. (1978). A matter of individuality. Philosophy of Science, 45(3), 335–360.

    Article  Google Scholar 

  • Irie, N., & Kuratani, S. (2011). Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nature Communications, 2, 248.

    Article  PubMed  CAS  Google Scholar 

  • Istock, C. A. (1966). The evolution of complex life cycle phenomena: An ecological perspective. Evolution, 67, 595–605.

    Google Scholar 

  • Kalinka, A. T., Varga, K. M., Gerrard, D. T., Preibisch, S., Corcoran, D. L., Jarrells, J., Ohler, U., Bergman, C. M., & Tomancak, P. (2010). Gene expression divergence recapitulates the developmental hourglass model. Nature, 468, 811–814.

    Article  CAS  PubMed  Google Scholar 

  • Le Dréau, G., & Martí, E. (2012). Dorsal-ventral patterning of the neural tube: A tale of three signals. Developmental Neurobiology, 72(12), 1471–1481.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, P., Smith, W. C., & Nishida, H. (2008). Ascidians and the plasticity of the chordate developmental program. Current Biology, 18, R620–R631.

    Article  CAS  PubMed  Google Scholar 

  • Levin, M., Anavy, L., Cole, A. G., Winter, E., Mostov, N., Khair, S., Senderovich, N., Kovalev, E., Silver, D. H., Feder, M., Fernandez-Valverde, S. L., Nakanishi, N., Simmons, D., Simakov, O., Larsson, T., Liu, S.-Y., Jerafi-Vider, A., Yaniv, K., Ryan, J. F., … Yanai, I. (2016). The mid-developmental transition and the evolution of animal body plans. Nature, 531, 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin, M., Hashimshony, T., Wagner, F., & Yanai, I. (2012). Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Developmental Cell, 22, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Lewontin, R. C. (1978). Adaptation. Scientific American, 239(3), 212–231.

    Article  CAS  PubMed  Google Scholar 

  • Long, J. H., Koob-Edmunds, M., Sinwell, B., & Koob, T. J. (2002). The notochord of hagfish Myxine glutinosa: Visco-elastic properties and mechanical functions during steady swimming. Journal of Experimental Biology, 205, 3819–3831.

    Article  PubMed  Google Scholar 

  • Love, A. C. (2008). Typology reconfigured: From the metaphysics of essentialism to the epistemology of representation. Acta Biotheoretica, 57, 51–75.

    Article  PubMed  Google Scholar 

  • Martín-Durán, J. M., & Egger, B. (2012). Developmental diversity in free-living flatworms. EvoDevo, 3, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayr, E. (1959). Darwin and the evolutionary theory in biology. In B. J. Meggers (Ed.), Evolution and anthropology: A centennial appraisal (pp. 1–10). Anthropological Society of Washington.

    Google Scholar 

  • Mayr, E. (1970). Populations, Species, and evolution: An abridgment of animal species and evolution. Harvard University Press.

    Google Scholar 

  • Mayr, E. (1982). The growth of biological thought. Harvard University Press.

    Google Scholar 

  • McKennan, K. Z., Wagner, G. P., & Cooper, K. L. (2021). A developmental perspective of homology and evolutionary novelty. Current Topics in Developmental Biology, 141, 1–38.

    Article  Google Scholar 

  • McMahon, D. P., & Hayward, A. (2016). Why grow up? A perspective on insect strategies to avoid metamorphosis. Ecological Entomology, 41, 505–515.

    Article  Google Scholar 

  • Minelli, A., & Fusco, G. (2013). Homology. In K. Kampourakis (Ed.), The philosophy of biology: A companion for educators (pp. 289–322). Springer.

    Chapter  Google Scholar 

  • Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., & Worm, B. (2011). How Many species are there on earth and in the ocean? PLoS Biology, 9, e1001127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran, N. A. (1994). Adaptation and constraint in the complex life cycles of animals. Annual Review of Ecology and Systematics, 25, 573–600.

    Article  Google Scholar 

  • Nyhart, L. K. (1995). Biology takes form animal morphology and the German Universities, 1800–1900. University of Chicago Press.

    Google Scholar 

  • Oates, A. C., Morelli, A. G., & Ares, S. (2012). Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock. Development, 139(4), 625–639.

    Article  CAS  PubMed  Google Scholar 

  • Patel, N. H. (1994). Developmental evolution: Insights from studies of insect segmentation. Science, 266, 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Peel, A. D. (2004). The evolution of arthropod segmentation mechanisms. BioEssays, 26, 1108–1116.

    Article  CAS  PubMed  Google Scholar 

  • Peel, A. D., Chipman, A. D., & Akam, M. (2005). Arthropod segmentation: Beyond the Drosophila paradigm. Nature Reviews Genetics, 6, 905–916.

    Article  CAS  PubMed  Google Scholar 

  • Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S., & Robinson-Rechavi, M. (2013). The hourglass and the early conservation models—Co-existing patterns of developmental constraints in vertebrates. PLoS Genetics, 9(4), e1003476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piette, J., & Lemaire, P. (2015). Thaliaceans, the neglected pelagic relatives of ascidians: A developmental and evolutionary enigma. The Quarterly Review of Biology, 90(2), 117–145.

    Article  PubMed  Google Scholar 

  • Pires-daSilva, A., & Sommer, R. J. (2003). The evolution of signalling pathways in animal development. Nature Reviews Genetics, 4, 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. University of Chicago Press.

    Book  Google Scholar 

  • Remane, A. (1952). Die Grundlagen des natürlichen Systems, der vergleichenden Anatomie und der Phylogenetik. Akademische Verlagsgesellschaft Geest & Portig K.G.

    Google Scholar 

  • Ribes, V., Balaskas, N., Sasai, N., Cruz, C., Dessaud, E., Cayuso, J., Tozer, S., Yang, L. L., Novitch, B., Marti, E., & Briscoe, J. (2010). Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes & Development, 24, 1186–1200.

    Article  CAS  Google Scholar 

  • Richardson, M. K., Hanken, J., Gooneratne, M. L., Pieau, C., Raynaud, A., Selwood, L., & Wright, G. M. (1997). There is no highly conserved embryonic stage in the vertebrates: Implications for current theories of evolution and development. Anatomy and Embryology, 196, 91–106.

    Article  CAS  PubMed  Google Scholar 

  • Riedl, R. (1978). Order in living organisms: A systems analysis of evolution. Wiley.

    Google Scholar 

  • Rolff, J., Johnson, P. R., & Reynolds, S. (2019). Complete metamorphosis of insects. Philosophical Transactions of the Royal Society b: Biological Sciences, 374, 20190063.

    Article  Google Scholar 

  • Row, R. H., Tsotras, S. R., Goto, H., & Martin, B. L. (2016). The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues. Development, 143, 244–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rupke, N. A. (2009). Richard Owen: Biology without Darwin. University of Chicago Press.

    Book  Google Scholar 

  • Ruppert, E. E. (2005). Key characters uniting hemichordates and chordates: Homologies or homoplasies? Canadian Journal of Zoology, 83, 8–23.

    Article  Google Scholar 

  • Sander, K. (1983). The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In B. C. Goodwin, N. Holder, & C. C. Wylie (Eds.), Development and Evolution (pp. 137–159). Cambridge University Press.

    Google Scholar 

  • Sarasin, P. (2009). Darwin und foucault. Suhrkamp Verlag.

    Google Scholar 

  • Schmidt, K., & Starck, J. M. (2011). Testing Evolutionary hypotheses about the phylotypic period of Zebrafish. Journal of Experimental Zoology (molecular and Developmental Evolution), 316, 319–329.

    Article  Google Scholar 

  • Scholtz, G. (2004). Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In G. Scholtz (Ed.), Evolutionary developmental biology of crustacea (pp. 3–16). A. A. Balkema.

    Google Scholar 

  • Scholtz, G. (2010). Deconstructing morphology. Acta Zoologica, 91, 44–63.

    Article  Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (1997). Fossils, genes and the evolution of animal limbs. Nature, 388, 639–648.

    Article  CAS  PubMed  Google Scholar 

  • Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823.

    Article  CAS  PubMed  Google Scholar 

  • Slack, J. M. W., Holland, P. W. H., & Graham, C. F. (1993). The zootype and the phylotypic stage. Nature, 361, 490–492.

    Article  CAS  PubMed  Google Scholar 

  • Stemple, D. L. (2005). Structure and function of the notochord: An essential organ for chordate development. Development, 132, 2503–2512.

    Article  CAS  PubMed  Google Scholar 

  • Tam, P. P. L., & Gad, J. M. (2004). Gastrulation in the mouse embryo. In C. D. Stern (Ed.), Gastrulation (pp. 233–262). Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Tendolkar, A., Pomerantz, A. F., Heryanto, C., Shirk, P. D., Patel, N. H., & Martin, A. (2021). Ultrabithorax is a micromanager of hindwing identity in butterflies and moths. Frontiers in Ecology and Evolution, 9, 161.

    Article  Google Scholar 

  • Tripathi, P., Guo, Q., Wang, Y., Coussens, M., Liapis, H., Jain, S., Kuehn, M. R., Capecchi, M. R., & Chen, F. (2010). Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Developmental Biology, 340, 518–527.

    Article  CAS  PubMed  Google Scholar 

  • True, J. R., & Haag, E. S. (2001). Developmental system drift and flexibility in evolutionary trajectories. Evolution & Development, 3(2), 109–119.

    Article  CAS  Google Scholar 

  • Valentine, J. W. (1975). Adaptive strategy and the origin of grades and ground-plans. American Zoologist, 15, 391–404.

    Article  Google Scholar 

  • Valentine, J. W. (1977). General patterns of metazoan evolution. In A. Hallam (Ed.), Patterns of evolution, as illustrated by the fossil record (pp. 27–57). Elsevier.

    Chapter  Google Scholar 

  • Valentine, J. W. (2004). On the origin of phyla. University of Chicago Press.

    Google Scholar 

  • von Baer, K. E. (1828). Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Bornträger.

    Book  Google Scholar 

  • von Dassow, G., Meir, E., Munro, E. M., & Odell, G. M. (2000). The segment polarity network is a robust development module. Nature, 406, 188–192.

    Article  Google Scholar 

  • Wagner, G., & Tomlinson, G. (2022). Extending the explanatory scope of evolutionary theory: The origination of historical kinds in biology and culture. Philosophy, Theory, and Practice in Biology, 14. https://doi.org/10.3998/ptpbio.2095

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8(6), 473–479.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton University Press.

    Book  Google Scholar 

  • Wagner, G. P., & Laubichler, M. D. (2004). Rupert riedl and the re-synthesis of evolutionary and developmental biology: body plans and evolvability. Journal of Experimental Zoology (molecular and Developmental Evolution), 302B, 92–102.

    Article  Google Scholar 

  • Wilson, R. A. (Ed.). (1999). Species: New Interdisciplinary Essays. MIT Press.

    Google Scholar 

  • Wimsatt, W. C. (1986). Developmental constraints, generative entrenchment and the innate-acquired distinction. In W. Bechtel (Ed.), Integrating scientific disciplines (pp. 185–208). Martinus Nijhoff.

    Chapter  Google Scholar 

  • Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Harvard University Press.

    Book  Google Scholar 

  • Wosskressensky, N. M. (1928). Über die wirkung der röntgenbestrahlung auf das embryonale wachstum. Archiv Für Entwicklungsmechanik Der Organismen, 113, 447–461.

    Article  Google Scholar 

  • Wray, G., & Strathmann, R. (2002). Stasis, change, and functional constraint in the evolution of animal body plans, whatever they may be. Vie Et Milieu, Observatoire Océanologique, 52(4), 189–199.

    Google Scholar 

  • Yeates, D. K. (1995). Groundplans and exemplars: Paths to the tree of life. Cladistics, 11, 343–357.

    Article  CAS  PubMed  Google Scholar 

  • Zañudo, J. G. T., Yang, G., & Albert, R. (2017). Structure-based control of complex networks with nonlinear dynamics. Proceedings of the National Academy of Sciences, 114(28), 7234–7239.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

GPW gratefully acknowledges the financial support of the John Templeton Foundation (Grant No. 61329). The opinions expressed in this paper are those of the authors and not those of the JTF. JD thanks the Research Foundation—Flanders (FWO) for financial support (Grant Nos. 41277 and 88559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter P. Wagner.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DiFrisco, J., Wagner, G.P. Body Plan Identity: A Mechanistic Model. Evol Biol 49, 123–141 (2022). https://doi.org/10.1007/s11692-022-09567-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-022-09567-z

Keywords

Navigation