Skip to main content
Log in

Facultative Transitions Have Trouble Committing, But Stable Life Cycles Predict Salamander Genome Size Evolution

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Facultative traits can provide phenotypic lability in dynamic environments, but it is unclear how weaving between disparate habitats impacts non-facultative traits that are carried along the way. The life cycles of salamanders are associated with distinct ontogenies, aquatic-to-terrestrial (biphasic), completely-terrestrial (direct development), and completely-aquatic (larval form paedomorphic). Salamanders have some of the largest genomes among vertebrates, and the most extreme expansions have been attributed to paedomorphosis and life cycle simplification. Recent analyses of genome size evolution across amphibians have rejected this hypothesis for salamanders. Our analyses show that treatment of facultatively paedomorphic salamanders, which are alternatively biphasic, in part explains this discrepancy. Nearly all of the facultatively paedomorphic species analyzed have genome sizes that overlap with the optimum of biphasic species. We found that obligate paedomorphs, alone and when combined with direct developers, have significantly larger genome sizes than biphasics plus facultative paedomorphs. In general, salamander genome size variation fits life cycle models better than those for larval ecology, adult ecology, or aquatic habitat stability. Obligate transitions to a simple life cycle appear to have been an important route for lineages to evolve significant divergence in genome size from biphasic ancestors. Our analyses support the classic association between genome size variation and life cycle complexity in salamanders, which may ultimately reflect patterns of time limited development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, D. C., & Collyer, M. L. (2018). Phylogenetic ANOVA: GROUP-clade aggregation, biological challenges, and a refined permutation procedure. Evolution,72, 1204–1215.

    PubMed  Google Scholar 

  • Arnold, S. J. (2014). Phenotypic evolution: The ongoing synthesis. American Naturalist,183, 729–746.

    Google Scholar 

  • Beaulieu, J. M., Jhwueng, D. C., Boettiger, C., & O’Meara, B. C. (2012). Modeling stabilizing selection: Expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution,66, 2369–2383.

    PubMed  Google Scholar 

  • Beaulieu, J. M., Leitch, I. J., Patel, S., Pendharkar, A., & Knight, C. A. (2008). Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist,179, 975–986.

    Google Scholar 

  • Bonett, R. M. (2016). An integrative endocrine model for the evolution of developmental timing and life history of plethodontids and other salamanders. Copeia,104, 209–221.

    Google Scholar 

  • Bonett, R. M. (2018). Heterochrony. In L. Nuño de la Rosa & G. B. Müller (Eds.), Evolutionary developmental biology (pp. 1–14). New York: Springer.

    Google Scholar 

  • Bonett, R. M., Trujano-Alvarez, A. L., Williams, M. J., & Timpe, E. K. (2013). Biogeography and body size shuffling of aquatic salamander communities on a shifting refuge. Proceedings of the Royal Society B,280, 20130200.

    PubMed  PubMed Central  Google Scholar 

  • Bonett, R. M., Steffen, M. A., & Robison, G. A. (2014). Heterochrony repolarized: A phylogenetic analysis of developmental timing in plethodontid salamanders. EvoDevo,5, 27.

    PubMed  PubMed Central  Google Scholar 

  • Bonett, R. M., & Blair, A. L. (2017). Evidence for complex life cycle constraints on salamander body form diversification. Proceedings of the National Academy of Sciences USA,114, 9936–9941.

    CAS  Google Scholar 

  • Bonett, R. M., Phillips, J. G., Ledbetter, N. M., Martin, S. D., & Lehman, L. (2018). Rapid phenotypic evolution following shifts in life cycle complexity. Proceedings of the Royal Society B: Biological Sciences,285, 20172304.

    PubMed  PubMed Central  Google Scholar 

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., et al. (2014). BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Computational Biology,10, e1003537.

    PubMed  PubMed Central  Google Scholar 

  • Burnham, K., & Anderson, D. (2002). Model selection and multi-model inference: A practical information theoretic approach (2nd ed.). New York: Springer.

    Google Scholar 

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modeling approach for adaptive evolution. American Naturalist,164, 683–695.

    Google Scholar 

  • Cavalier-Smith, T. (1991). Coevolution of vertebrate genome, cell, and nuclear sizes. In G. Ghiara (Ed.), Symposium on the evolution of terrestrial vertebrates (pp. 51–86). Mucchi: Modena.

    Google Scholar 

  • Chippindale, P. T., Bonett, R. M., Baldwin, A. S., & Wiens, J. J. (2004). Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution,58, 2809–2822.

    CAS  PubMed  Google Scholar 

  • Collyer, M. L., & Adams, D. C. (2018). RRPP: An R package for fitting linear models to high-dimensional data using residual randomization. Methods in Ecology and Evolution,9, 1772–1779.

    Google Scholar 

  • Das, B., Cai, L., Carter, M. G., Piao, Y.-L., Sharov, A. A., Ko, M. S., et al. (2006). Gene expression changes at metamorphosis induced by thyroid hormone in Xenopus laevis tadpoles. Developmental Biology,291, 342–355.

    CAS  PubMed  Google Scholar 

  • Denoël, M., & Ficetola, G. F. (2014). Heterochrony in a complex world: Disentangling environmental processes of facultative paedomorphosis in an amphibian. Journal of Animal Ecology,83, 606–615.

    Google Scholar 

  • Denoël, M., & Joly, P. (2001). Adaptive significance of facultative paedomorphosis in Triturus alpestris (Amphibia, Caudata): Resource partitioning in an alpine lake. Freshwater Biology,46, 1387–1396.

    Google Scholar 

  • Denoël, M., Joly, P., & Whiteman, H. H. (2005). Evolutionary ecology of facultative paedomorphosis in newts and salamanders. Biological Review,80, 663–671.

    Google Scholar 

  • Dodsworth, S., Guignard, S., Hidalgo, O., Leitch, I. J., & Pellicer, J. (2016). Digests: Salamanders ’ slow slither into genomic gigantism. Evolution,70, 2915–2916.

    PubMed  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1994). Biology of amphibians. Baltimore: JHU press.

    Google Scholar 

  • Dumont, E. R., Da, L. M., Goldberg, A., Santana, S. E., Rex, K., & Voigt, C. C. (2012). Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the National Academy of Sciences USA,279, 1797–1805.

    Google Scholar 

  • Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist,169, 227–244.

    Google Scholar 

  • Etheridge, K. (1990). The energetics of estivating sirenid salamanders (Siren lacertina and Pseudobranchus striatus). Herpetologica,46, 407–414.

    Google Scholar 

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist,125, 1–15.

    Google Scholar 

  • Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution,64, 1865–1884.

    PubMed  Google Scholar 

  • Goin, O. B., Goin, C. J., & Bachmann, K. (1968). DNA and amphibian life history. Copeia,1968, 532–540.

    Google Scholar 

  • Gregory, T. R. (2001). The bigger the C-value, the larger the cell: Genome size and red blood cell size in vertebrates. Blood Cells, Molecules and Diseases,27, 830–843.

    CAS  PubMed  Google Scholar 

  • Gregory, T. R. (2002a). A bird’s-eye view of the C-value enigma: Genome size, cell size, and metabolic rate in the class Aves. Evolution,56, 121–130.

    CAS  PubMed  Google Scholar 

  • Gregory, T. R. (2002b). Genome size and developmental complexity. Genetica,115, 131–146.

    PubMed  Google Scholar 

  • Gregory, T. R. (2005). The evolution of the genome. Amsterdam: Elsevier.

    Google Scholar 

  • Gregory, T. R. (2019). Animal genome size database. https://www.genomesize.com.

  • Grime, J. P. (1982). Variation in genome size-an ecological interpretation. Nature,299, 151–153.

    Google Scholar 

  • Hanken, J. (1992). Life history and morphological evolution. Journal of Evolutionary Biology,5, 549–557.

    Google Scholar 

  • Janson, E. M., Stireman, J. O., III, Singer, M. S., & Abbot, P. (2008). Phytophagous insect—Microbe mutualisms and adaptive evolutionary diversification. Evolution,62, 997–1012.

    PubMed  Google Scholar 

  • Jockusch, E. L. (1997). An evolutionary correlate of genome size change in plethodontid salamanders. Proceedings of the Royal Society B: Biological Sciences,264, 597–604.

    CAS  PubMed Central  Google Scholar 

  • Lande, R. (1980). Genetic variation and phenotypic evolution during allopatric speciation. American Naturalist,116, 463–479.

    Google Scholar 

  • Ledbetter, N. M., & Bonett, R. M. (2019). Terrestriality constrains salamander limb diversification: Implications for the evolution of pentadactyly. Journal of Evolutionary Biology,32, 1–11.

    Google Scholar 

  • Lertzman-Lepofsky, G., Mooers, A. Ø., & Greenberg, D. A. (2019). Ecological constraints associated with genome size across salamander lineages. Proceedings of the Royal Society B,286, 20191780.

    PubMed  PubMed Central  Google Scholar 

  • Licht, L. E., & Lowcock, L. A. (1991). Genome size and metabolic rate in salamanders. Comparative Biochemistry and Physiology,100B, 83–92.

    CAS  Google Scholar 

  • Liedtke, H. C., Gower, D. J., Wilkinson, M., & Gomez-Mestre, I. (2018). Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nature Ecology & Evolution,2, 1792–1799.

    Google Scholar 

  • Losos, J. B., Warheitt, K. I., & Schoener, T. W. (1997). Adaptive differentiation following experimental island colonization in Anolis lizards. Nature,387, 70–73.

    CAS  Google Scholar 

  • Lynch, M., & Conery, J. S. (2003). The origins of genome complexity. Science,302, 1401–1405.

    CAS  PubMed  Google Scholar 

  • Martin, C., & Gordon, R. (1995). Differentiation trees, A junk DNA molecular clock, and the evolution of neoteny in salamanders. Journal of Evolutionary Biology,8, 339–354.

    Google Scholar 

  • Moczek, A. P., Sultan, S., Foster, S., Ledon-Rettig, C., Dworkin, I., Nijhout, H. F., et al. (2011). The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society of London B,278, 2705–2713.

    Google Scholar 

  • Mohlhenrich, E. R., & Mueller, R. L. (2016). Genetic drift and mutational hazard in the evolution of salamander genomic gigantism. Evolution,70, 2865–2878.

    CAS  PubMed  Google Scholar 

  • Mueller, R. L. (2015). Genome biology and the evolution of cell-size diversity. Cold Spring Harbor Perspectives in Biology,7, a019125.

    PubMed  PubMed Central  Google Scholar 

  • Mueller, R. L., & Jockusch, E. L. (2018). Jumping genomic gigantism. Nature Ecology & Evolution,2, 1687.

    Google Scholar 

  • Mueller, R. L., Macey, J. R., Jaekel, M., Wake, D. B., & Boore, J. L. (2004). Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proceedings of the National Academy of Sciences USA,101, 13820–13825.

    CAS  Google Scholar 

  • O’Meara, B. C., Ane, C., Sanderson, M. J., & Wainwright, P. C. (2006). Testing for different rates of continuous trait evolution using likelihood. Evolution,60, 922–933.

    PubMed  Google Scholar 

  • Ovaska, K., & Estrada, A. R. (2003). Eleutherodactylus antillensis (Coquí Churí).Reproduction. Herpetological Review,34, 229.

    Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics,20, 289–290.

    CAS  PubMed  Google Scholar 

  • Pfennig, D., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D., & Moczek, A. P. (2010). Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology and Evolution,25, 459–467.

    PubMed  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. R Core Team. (2019). nlme: Linear and nonlinear mixed effects models. R package version 3.1–143, https://CRAN.R-project.org/package=nlme.

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution,3, 217–223.

    Google Scholar 

  • Row, J. R., Donaldson, M. E., Longhi, J. N., Saville, B. J., & Murray, D. L. (2016). Tissue-specific transcriptome characterization for developing tadpoles of the northern leopard frog (Lithobates pipiens). Genomics,108, 232–240.

    CAS  PubMed  Google Scholar 

  • Sanchez, E., Küpfer, E., Goedbloed, D. J., et al. (2018). Morphological and transcriptomic analyses reveal three discrete primary stages of postembryonic development in the common fire salamander, Salamandra salamandra. Journal of Experimental Zoology (Mol Dev Evol),330, 96–108.

    CAS  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics,6, 461–464.

    Google Scholar 

  • Sessions, S. K. (2008). Evolutionary cytogenetics in salamanders. Chromosome Research,16, 183–201.

    CAS  PubMed  Google Scholar 

  • Sessions, S. K., & Larson, A. (1987). Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution,41, 1239–1251.

    PubMed  Google Scholar 

  • Shi, Y.-B. (2000). Amphibian metamorphosis. Hoboken: Wiley.

    Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science,236, 787–792.

    CAS  PubMed  Google Scholar 

  • Smith, M. E., & Secor, S. M. (2017). Physiological responses to fasting and estivation for the Three-Toed Amphiuma (Amphiuma tridactylum). Physiological and Biochemical Zoology,90, 240–256.

    PubMed  Google Scholar 

  • Starostova, Z., Kubička, L., Konarzewski, M., Kozłowski, J., & Kratochvíl, L. (2009). Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. American Naturalist,174, E100–105.

    Google Scholar 

  • Sun, C., López Arriaza, J. R., & Mueller, R. L. (2012). Slow DNA loss in the gigantic genomes of salamanders. Genome Biology and Evolution,4, 1340–1348.

    PubMed  PubMed Central  Google Scholar 

  • Sun, C., & Mueller, R. L. (2014). Hellbender genome sequences shed light on genomic expansion at the base of crown salamanders. Genome Biology and Evolution,6, 1818–1829.

    PubMed  PubMed Central  Google Scholar 

  • Szarski, H. (1983). Cell size and the concept of wasteful and frugal evolutionary strategies. Journal of Theoretical Biology,105, 201–209.

    CAS  PubMed  Google Scholar 

  • Team, R. C. (2018). R: A language and environment for statistical computing. Austria: R Foundation for Statistical Computing Vienna.

    Google Scholar 

  • Thomas, G. H., Freckleton, R. P., & Szekely, T. (2006). Comparative analysis of the influence of developmental mode on phenotypic diversification rates in shorebirds. Proceedings of the Royal Society B,273, 1619–1624.

    PubMed  PubMed Central  Google Scholar 

  • Thompson, K. (1990). Genome size, seed size and germination temperature in herbaceous angiosperms. Evolutionary Trends in Plants,4, 113–116.

    Google Scholar 

  • Uyeda, J. C., Hansen, T. F., Pienaar, J., & Arnold, S. J. (2011). The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences USA,108, 15908–15913.

    CAS  Google Scholar 

  • Uyeda, J. C., Pennell, M. W., Miller, E. T., Maia, R., & McClain, C. R. (2017). The evolution of energetic scaling across the vertebrate tree of life. American Naturalist,190, 185–199.

    Google Scholar 

  • Van Valen, L. (1971). Adaptive zones and the orders of mammals. Evolution,25, 420–428.

    PubMed  Google Scholar 

  • Vinogradov, A. E. (1997). Nucleotypic effect in homeotherms: Body-mass independent resting metabolic rate of passerine birds is related to genome size. Evolution,51, 220–225.

    PubMed  Google Scholar 

  • Vinogradov, A. E. (1995). Nucleotypic effect in homeotherms: Body-mass-corrected basal metabolic rate of mammals is related to genomic size. Evolution,49, 1249–1259.

    PubMed  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution,50, 967–976.

    PubMed  Google Scholar 

  • Wagner, L. A. (2014). Life history variables of Dicamptodon salamanders. Oregon State University.

  • Wake, D. B., & Marks, S. B. (1993). Development and evolution of plethodontid salamanders: A review of prior studies and a prospectus for future research. Herpetologica,49, 194–203.

    Google Scholar 

  • Wells, K. D. (2010). The ecology and behavior of amphibians. Chicago: University of Chicago press.

    Google Scholar 

  • West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology and Systematics,20, 249–278.

    Google Scholar 

  • West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences USA,102, 6543–6549.

    CAS  Google Scholar 

  • Whiteman, H. H. (1994). Evolution of facultative paedomorphosis in salamanders. Quarterly Review of Biology,69, 205–221.

    Google Scholar 

  • Wollenberg Valero, K., Garcia-Porta, J., Rodríguez, A., et al. (2017). Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nature Communications,8, 15213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Womack, M. C., Metz, M. J., & Hoke, K. L. (2019). Larger genomes linked to slower development and loss of late-developing traits. American Naturalist,194, 854–864.

    Google Scholar 

Download references

Acknowledgements

We thank B. Hallgrimsson and an anonymous reviewer for comments on the manuscript. We also thank M. Collyer for verifying our RRPP phyloANOVA code. Funding for this research was provided in part by the University of Tulsa, and the National Science Foundation (DEB 1050322 and DEB 1840987) to RMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Bonett.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest with regards to this research.

Research Involving Human and Animal Rights

This study did not directly involve live animals or experiments.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonett, R.M., Hess, A.J. & Ledbetter, N.M. Facultative Transitions Have Trouble Committing, But Stable Life Cycles Predict Salamander Genome Size Evolution. Evol Biol 47, 111–122 (2020). https://doi.org/10.1007/s11692-020-09497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-020-09497-8

Keywords

Navigation