Skip to main content
Log in

Extrinsic Versus Intrinsic Control of Avian Communication Based on Colorful Plumage Porphyrins

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Studies of avian visual communication are often approached from the perspective of adaptation-based hypotheses couched in an ecological framework. Despite their exceptional ecological diversity, however, birds express relatively few pigment categories in their visual signals or receptors. The mismatch between ecologic and pigment diversity suggests the operation of non-ecological constraints on avian visual communication. Colorful plumage porphyrins (turacoverdin and turacin) were examined to determine if both signal and receptor pigment absorption patterns co-vary with ecology, if only plumage pigment absorption varies with ecology, or if plumage and receptor pigment absorption are tied to each other’s physicochemical, physiological, and phylogenetic characteristics rather than to ecology. Physicochemical constraints on signal form were suggested by the persistence of the plumage pigments’ diagnostic spectral structure across lineages despite dramatic ecological differences. Physiological constraints on communication were suggested by the occurrence of colorful porphyrins only in birds with violet-sensitive (VS) vision, whose receptor sensitivities aligned to colorful porphyrin spectral structure much more strongly than did receptors of alternative visual systems. Phylogenetic constraints on these associations were evidenced by restriction of colorful plumage porphyrins to just a few lineages, all non-passerines (galliforms, musophagiforms, and charadriiforms). Synthesis of these patterns indicated that VS visual systems always evolved prior to colorful plumage porphyrins, suggesting a sensory bias for plumage pigments based on signal-receptor alignment. Patterns for colorful porphyrins and violet-sensitive systems reinforce the functional coupling between signal and receptor pigments observed for carotenoid plumage pigments in ultraviolet-sensitive birds, but the pairings differ in details of their alignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aidala, Z., Huynen, L., Brennan, P. L. R., Musser, J., Fidler, A., Chong, N., et al. (2012). Ultraviolet visual sensitivity in three avian lineages: Paleognaths, parrots and passerines. Journal of Comparative Physiology A, 198, 495–510.

    Article  Google Scholar 

  • Andersson, S., & Prager, M. (2006). Quantifying colors. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 41–89). Cambridge: Harvard University Press.

    Google Scholar 

  • Armenta, J. K., Dunn, P. O., & Whittingham, L. A. (2006). Effects of specimen age on plumage color. Auk, 125, 803–808.

    Article  Google Scholar 

  • Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re-evaluating the cost and limits of adaptive phenotypic plasticity. Proceedings of the Royal Society of London. Series B, 277, 503–511.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker, A. J., Pereira, S. L., & Paton, T. A. (2007). Phylogenetic relationships and divergence times of Charadriiformes genera: Multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters, 3, 205–209.

    Article  PubMed Central  PubMed  Google Scholar 

  • Beason, R. C., & Loew, E. R. (2008). Visual pigment and oil droplet characteristics of the bobolink (Dolichonyx oryzivorus), a New World migratory bird. Vision Research, 48, 1–8.

    Article  PubMed  Google Scholar 

  • Bleiweiss, R. (2005). Variation in ultraviolet reflectance by carotenoid-bearing feathers of tanagers (Thraupini: Emberizinae: Passeriformes). Biological Journal of the Linnean Society. Linnean Society of London, 84, 243–257.

    Article  Google Scholar 

  • Bleiweiss, R. (2007). On the ecological basis of interspecific homoplasy in carotenoid-bearing signals. Evolution; International Journal of Organic Evolution, 61, 2861–2878.

    Article  PubMed  Google Scholar 

  • Bleiweiss, R. (2008). Phenotypic integration expressed by carotenoid-bearing plumages of tanagers (Thraupini: Emberizinae) across the avian visual spectrum. Biological Journal of the Linnean Society. Linnean Society of London, 93, 89–109.

    Article  Google Scholar 

  • Bleiweiss, R. (2014). Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolutionary Biology, 41, 404–424.

    Article  Google Scholar 

  • Boughman, J. W. (2001). Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature, 411, 944–948.

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker, J. K. (2008). Evolution of vertebrate visual pigments. Vision Research, 48, 2022–2041.

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker, J. K., Wilkie, S. W., & Hunt, D. M. (1997). Visual pigments and oil droplets from six classes of photoreceptors in the retinas of birds. Vision Research, 37, 2183–2194.

    Article  CAS  PubMed  Google Scholar 

  • Briscoe, A. D. (2008). Reconstructing the ancestral butterfly eye: Focus on the opsins. Journal of Experimental Biology, 211, 1805–1813.

    Article  CAS  PubMed  Google Scholar 

  • Brush, A. H. (1990). Metabolism of carotenoid pigments in birds. The FASEB Journal, 4, 2969–2977.

    CAS  PubMed  Google Scholar 

  • Butler, M. W., Toomey, M. B., & McGraw, K. J. (2011). How many color metrics do we need? Evaluating how different color-scoring procedures explain carotenoid pigment content in avian bare-part and plumage ornaments. Behavioral Ecology and Sociobiology, 65, 401–413.

    Article  Google Scholar 

  • Capuska, G. E. M., Huynen, L., Lambert, D., & Raubenheimer, D. (2011). UVS is rare in seabirds. Vision Research, 51, 1333–1337.

    Article  Google Scholar 

  • Carleton, K. L. (2009). Cichlid fish visual systems: Mechanisms of spectral tuning. Integrative Zoology, 4, 75–86.

    Article  PubMed  Google Scholar 

  • Carleton, K. L., Parry, J. W. L., Bowmaker, J. K., Hunt, D. M., & Seehausen, O. (2005). Color vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Molecular Ecology, 14, 4341–4353.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, L. S., Cowing, J. A., Wilkie, S. E., Bowmaker, J. K., & Hunt, D. M. (2007). The molecular evolution of avian ultraviolet- and violet-sensitive visual pigments. Molecular Biology and Evolution, 24, 1843–1852.

    Article  CAS  PubMed  Google Scholar 

  • Chavez, J., Kelber, A., Vorobyev, M., & Lind, O. (2014). Unexpectedly low UV-sensitivity in a bird, the budgerigar. Biology Letters, 10, 1–4.

    Article  Google Scholar 

  • Chiao, C.-C., Vorobyev, M., Cronin, T. W., & Osorio, D. (2000). Spectral tuning of dichromats to natural scenes. Vision Research, 40, 3257–3271.

    Article  CAS  PubMed  Google Scholar 

  • Church, A. H. (1870). Researches on Turacin, an animal pigment containing copper. Proceedings of the Royal Society Philosophical Transactions Series A., 159, 627–636.

    Google Scholar 

  • Church, A. H. (1892). Researches on Turacin, an animal pigment containing copper. Proceedings of the Royal Society Philosophical Transactions Series A., 183, 511–530.

    Article  Google Scholar 

  • Church, A. H. (1913). Notes on turacin and turacin-bearers. Proceedings of the Zoological Society, 1913, 639–643.

    Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Coyle, B. J., Hart, N. S., Carleton, K. L., & Borgia, G. (2012). Limited variation in visual sensitivity among bowerbird species suggests that there is no link between spectral tuning and variation in display colouration. Journal of Experimental Biology, 215, 1090–1105.

    Article  PubMed  Google Scholar 

  • Cummings, M. E. (2007). Sensory trade-offs predict signal divergence in surfperch. Evolution, 61, 530–545.

    Article  PubMed  Google Scholar 

  • Cuthill, I. C. (2006). Color Perception. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 3–40). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cuthill, I. C., Partridge, J., Bennett, A. T. D., Church, S. C., Hart, N. S., & Hunt, S. (2000). Ultraviolet vision in birds. Advances in the Study of Behavior, 29, 159–214.

    Article  Google Scholar 

  • del Hoyo, J., Elliott, A., & Sargatal, J. (Eds.). (1994). Handbook of birds of the world, Vol. 2. New World Vultures to Guineafowl. Barcelona: Lynx Ediciones.

    Google Scholar 

  • del Hoyo, J., Elliott, A., & Sargatal, J. (Eds.). (1996). Handbook of birds of the world, Vol. 3. Hoatzin to Auks. Barcelona: Lynx Ediciones.

    Google Scholar 

  • del Hoyo, J., Elliott, A., & Sargatal, J. (Eds.). (1997). Handbook of birds of the world, Vol. 4. Sandgrouse to Cuckoos. Barcelona: Lynx Ediciones.

    Google Scholar 

  • Doucet, S. M., Mennill, D. J., & Hill, G. E. (2007). The evolution of signal design in manakin plumage ornaments. American Naturalist, 169, S62–S80.

    Article  Google Scholar 

  • Dyke, J. (1992). Reflectance spectra of plumage areas covered by green feather pigments. Auk, 109, 293–301.

    Article  Google Scholar 

  • Endler, J. A. (1992). Signals, signal conditions and the direction of evolution. American Naturalist, 139 (Suppl.), s125–s153.

  • Endler, J. A. (1993). The color of light in forests and its implications. Ecological Monographs, 63, 1–27.

    Article  Google Scholar 

  • Endler, J. A., & Basolo, A. L. (1998). Sensory ecology, receiver biases and sexual selection. Trends in Ecology & Evolution, 13, 415–420.

    Article  CAS  Google Scholar 

  • Endler, J. A., & Mielke, P. W. (2005). Comparing entire colour patterns as birds see them. Biological Journal of the Linnean Society, 86, 405–431.

    Article  Google Scholar 

  • Fleishman, L. J., Bowman, M., Saunders, D., Miller, W. E., Rury, M. J., & Loew, E. R. (1997). The visual ecology of Puerto Rican anoline lizards: Habitat light and spectral sensitivity. Journal of Comparative Physiology A, 181, 446–460.

    Article  Google Scholar 

  • Frentiu, F. D., & Briscoe, A. D. (2008). A butterfly’s eye view of birds. BioEssays, 30, 1151–1162.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, C. M., & Ramirez, E. (2005). Evidence that sensory traps can evolve into honest signals. Nature, 7032, 50–54.

    Google Scholar 

  • Goldsmith, T. H., & Butler, B. K. (2003). The roles of receptor noise and cone oil droplets on the photopic spectral sensitivity of the budgerigar. Melopsittacus undulatus. Journal of Comparative Physiology A, 189, 135–142.

    CAS  Google Scholar 

  • Goldsmith, T. H., & Butler, B. K. (2005). Color vision of the budgerigar (Melopsittacus undulatus): Hue matches, tetrachromacy, and intensity discrimination. Journal of Comparative Physiology A, 191, 933–951.

    Article  Google Scholar 

  • Goldsmith, T. H., Collins, J. S., & Licht, S. (1984). The cone oil droplets of avian retinas. Vision Research, 24, 1661–1671.

    Article  CAS  PubMed  Google Scholar 

  • Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., et al. (2008). A phylogenomic study of birds reveals their evolutionary history. Science, 320, 1763–1767.

    Article  CAS  PubMed  Google Scholar 

  • Hart, N. S., & Hunt, D. M. (2007). Avian visual pigments: characteristics, spectral tuning, and evolution. American Naturalist, 169, S7–S26.

    Article  PubMed  Google Scholar 

  • Hart, N. S., Partridge, J. C., Bennett, A. T. D., & Cuthill, I. C. (2000). Visual pigments, cone oil droplets, and ocular media in four species of estrildid finch. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 186, 681–694.

    Article  CAS  Google Scholar 

  • Hart, N. S., & Vorobyev, M. D. (2005). Modeling bird spectral sensitivity from spectrophotometric data: A mathematical model of oil droplet spectral absorption. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 191, 381–392.

    Article  PubMed  Google Scholar 

  • Håstad, O., Victorsson, J., & Ödeen, A. (2005). Differences in color vision make passerines less conspicuous in the eyes of their predators. Proceedings of the National Academy of Sciences of the United States of America, 102, 6391–6394.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hill, G. E., & McGraw, K. J. (2006). Bird coloration: Mechanisms and measurements. Vol. I. Cambridge, MA: Harvard University Press.

  • Hunt, D. M., Carvalho, L. S., Cowing, J. A., & Davies, W. L. (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society Series B Biological Sciences, 364, 2941–2955.

    Article  CAS  Google Scholar 

  • Hurvich, L. M. (1981). Color vision. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., et al. (2014). Whole-genome analysis resolves early branches in the tree of life of modern birds. Science, 346, 1320–1331.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kingsolver, J. G., & Watt, W. B. (1983). Thermoregulatory strategies in Colias butterflies: Thermal stress and the limits to adaptation in temporally varying environments. American Naturalist, 121, 32–55.

    Article  Google Scholar 

  • LaFountain, A. M., Kaligotla, S., Cawley, S., Riedl, K. M., Schwartz, S. J., Frank, H. A., & Prum, R. O. (2010). Novel methoxy-carotenoids from the burgundy-colored plumage of the Pompadour Cotinga Xipholena punicea. Archives in Biochemiastry and Biophysics, 504, 142–153.

    Article  CAS  Google Scholar 

  • Leal, M., & Fleishman, L. J. (2004). Differences in visual signal design and detectability between allopatric populations of Anolis lizards. American Naturalist, 163, 26–39.

    Article  PubMed  Google Scholar 

  • Levine, J. S., & MacNichol, E. F, Jr. (1979). Visual pigments in teleost fishes: Effects of habitat, microhabitat and behavior on visual system evolution. Sensory Processes, 3, 95–131.

    CAS  PubMed  Google Scholar 

  • Lind, O., Chavez, J., & Kelber, A. (2013). The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions. Journal of Comparative Physiology A, 200, 197–207.

    Article  Google Scholar 

  • Lind, O., Mitkus, M., Olsson, P., & Kelber, A. (2014). Ultraviolet vision in birds: The importance of transparent eye media. Proceedings of the Royal Society of London. Series B: Biological Sciences, 281, 20132209.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lythgoe, J. N. (1979). The ecology of vision (p. 244). Oxford: Clarendon Press.

    Google Scholar 

  • Lythgoe, J. N., & Partridge, J. C. (1989). Visual pigments and the acquisition of visual information. Journal of Experimental Biology, 146, 1–2.

    CAS  PubMed  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2014). Mesquite: A modular system for evolutionary analysis. Version 3.02 http://mesquiteproject.org.

  • Marchetti, K. (1993). Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature, 362, 149–152.

    Article  Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Cambridge, MA: Belknap Press of Harvard University.

    Book  Google Scholar 

  • McGraw, K. J. (2006a). Mechanisms of uncommon colors: Pterins, porphyrins, and psittacofulvins. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 354–398). Cambridge, MA: Harvard University Press.

  • McGraw, K. J. (2006b). Mechanics of carotenoid-based coloration. In G. E. Hill & K. J. McGraw (Eds.), Bird coloration (Vol. I, pp. 177–242). Cambridge, MA: Harvard University Press.

  • McGraw, K. J., Toomey, M. B., Nolan, P. M., Morehouse, N. I., Massaro, M., & Jouventin, P. (2007). A description of unique fluorescent yellow pigments in penguin feathers. Pigment Cell Research, 20, 301–304.

    Article  CAS  PubMed  Google Scholar 

  • McNett, G. D., & Marchetti, K. (2005). Ultraviolet degradation in carotenoid patches: Live versus museum specimens of wood warblers (Parulidae). Auk, 122, 793–802.

    Article  Google Scholar 

  • Mendes-Pinto, M. M., LaFountain, A. M., Stoddard, M. C., Prum, R. O., Frank, H. A., & Bruno, R. (2012). Variation in carotenoid–protein interaction in bird feathers produces novel plumage coloration. Journal of the Royal Society, Interface, 9, 3338–3350.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moreau, R. E. (1958). Some aspects of the Musophagidae. Part 3. Ibis, 100, 238–270.

    Article  Google Scholar 

  • Morehouse, N. I., Vukusic, P., & Rutowski, R. (2007). Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proceedings of the Royal Society of London. Series B: Biological Sciences, 274, 359–366.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and publication bias. Behavioral Ecology, 15, 1044–1045.

    Article  Google Scholar 

  • Negro, J. J., Bortolotti, G. R., Mateo, R., & García, I. M. (2009). Porphyrins and phaeomelanins contribute to the reddish juvenal plumage of black-shouldered kits. Comparative Biochemistry and Physiology Part B, 153, 296–299.

    Article  Google Scholar 

  • Ödeen, A., & Håstad, O. (2003). Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Molecular Biology and Evolution, 20, 855–861.

    Article  PubMed  Google Scholar 

  • Ödeen, A., & Håstad, O. (2013). The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evolutionary Biology, 13, 36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ödeen, A., Håstad, O., & Alström, P. (2010). Evolution of ultraviolet vision in shorebirds (Charadriiformes). Biology Letters, 6, 370–374.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ödeen, A., Håstad, O., & Alström, P. (2011a). Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evolutionary Biology, 11, 313.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K., & Håstad, O. (2011b). Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proceedings of the Royal Society of London. Series B: Biological Sciences, 279, 1269–1276.

    Article  PubMed Central  PubMed  Google Scholar 

  • Osorio, D., Miklosi, A., & Gonda, Z. (1999a). Visual ecology and perception of coloration patterns by domestic chicks. Evolutionary Ecology, 13, 673–689.

    Article  Google Scholar 

  • Osorio, D., Vorobyev, M., & Jones, C. D. (1999b). Colour vision in domestic chicks. Journal of Experimental Biology, 202, 2951–2959.

    CAS  PubMed  Google Scholar 

  • Partridge, J. C. (1989). The visual ecology of avian cone oil droplets. Journal of Comparative Physiology, A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 165, 415–426.

    Article  Google Scholar 

  • Proctor, H. C. (1992). Sensory exploitation and the evolution of male mating behaviour: A cladistics test using water mites (Acari: Parasitengona). Animal Behaviour, 44, 745–752.

    Article  Google Scholar 

  • Renoult, J. P. H. M., Schaefer, B., Sallé, M., & Charpentier, J. E. (2011). The evolution of the multicoloured face of mandrills: Insights from the perceptual space of colour vision. Public Library of Science ONE, 6, 1–8.

    Google Scholar 

  • Rimington, C. (1939). A re-investigation of turacin, the copper porphyrin pigment of certain birds belonging to the Musophagidae. Proceedings of the Royal Society of London B., 127, 106–120.

    Article  CAS  Google Scholar 

  • Rodd, F. H., Hughes, K. A., Grether, G. F., & Baril, C. T. (2002). A possible non-sexual origin of mate preference: Are male guppies mimicking fruit? Proceedings of the Royal Society of London. Series B, 269, 475–481.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods. Washington, DC: International Life Sciences Institute Press.

    Google Scholar 

  • Sabbah, S., Lamela Laria, R., Gray, S. M., & Hawryshyn, C. W. (2010). Functional diversity in the color vision of cichlid fishes. BMC Biology, 8, 133.

    Article  PubMed Central  PubMed  Google Scholar 

  • SAS Institute Inc. (2013). SAS users guide, Version 9.1.3. Cary, NC: On Line Documentation.

  • Schluter, D., Price, T., Mooers, A. Ø., & Ludwig, D. (1997). Likelihood of ancestor states in adaptive radiation. Evolution, 51, 1699–1711.

    Article  Google Scholar 

  • Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D. J., Miyagi, R., et al. (2008). Speciation through sensory drive in cichlid fish. Nature, 455, 620–626.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, K. (1995). Phylogenetic tests of the sensory exploitation model of sexual selection. Trends in Ecology & Evolution, 10, 117–120.

    Article  CAS  Google Scholar 

  • Smith, E. L., Greenwood, V. J., & Bennett, A. T. D. (2002). Ultraviolet colour perception in European starlings and Japanese quail. Journal of Experimental Biology, 205, 3299–3306.

    PubMed  Google Scholar 

  • Stoddard, M. C., & Prum, R. O. (2008). Evolution of avian plumage color in a tetrahedral color space: A phylogenetic analysis of new world buntings. American Naturalist, 171, 755–776.

    Article  PubMed  Google Scholar 

  • Sutthiwong, N., & Dufossé, L. (2014). Production of carotenoids by Arthrobacter arilaitensis isolated from smear-ripened cheese. FEMS Microbiology Letters, 360, 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, D. B., McGoverin, C. M., McGraw, K. J., James, H. F., & Madden, O. (2013). Vibrational spectroscopic analysis of unique yellow feather pigments (spheniscins) in penguins. Journal of the Royal Society, Interface, 10, 20121065.

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomas, D. B., McGraw, K. J., Butler, M. W., Carrano, M. T., Madden, O., & James, H. F. (2014). Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proceedings of the Royal Society of London B, 281 doi.:10.1098/rspb.2014.0806.

  • Toral, G. M., Figuerola, J., & Negro, J. J. (2008). Multiple ways to become red: Pigment identification in red feathers using spectrometry. Comparative Biochemistry and Physiology, Part B, 150, 147–152.

    Article  CAS  Google Scholar 

  • Turner, D. (1997). Family Musophagidae (Turacos). In J. del Hoyo, A. Elliott, & J. Sargatal (Eds.), Handbook of the birds of the world, Volume 4, Sandgrouse to Cuckoos (pp. 480–508). Barcelona: Lynx Edicions.

    Google Scholar 

  • Völker, O. (1938). Porphyrin in Vogelfedern. Journal für Ornithologie, 86, 436–456.

    Article  Google Scholar 

  • Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., & Cuthill, I. C. (1998). Tetrachromacy, oil droplets and bird plumage colors. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 183, 621–633.

    Article  CAS  Google Scholar 

  • Wang, N., Kimball, R. T., Braun, E. L., Liang, B., & Zhang, L. (2013). Assessing phylogenetic relationships among Galliformes: A multigene phylogeny with expanded taxon sampling in Phasianidae. Public Library of Science ONE, 8, 1–12.

    Google Scholar 

  • Weidensaul, C. S., Colvin, B. A., Brinker, D. F., & Huy, J. S. (2011). Use of ultraviolet light as an aid in age classification of owls. Wilson Bulletin, 123, 373–377.

    Google Scholar 

  • With, T. K. (1973). On porphyrins in feathers of owls and bustards. International Journal of Biochemistry, 9, 893–895.

    Article  Google Scholar 

  • Yokoyama, S., Yang, H., & Starmer, W. T. (2008). Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates. Genetics, 179, 2037–2043.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I thank the Academy of Natural Sciences of Philadelphia (Nate Rice), the Delaware Museum of Natural History (Jean Woods), and the Los Angeles County Museum (Kimball Garrett) for loaning specimens, and the University of Wisconsin Zoological Museum (Laura Halverson-Monahan, Paula Holahan, Kathryn Jones) for logistical support. William Feeny and Sarah Friedrich assisted with drafting figures. The National Science Foundation (IOS 0741857), and the Vilas Life Cycle Program of the University of Wisconsin (133-PRJ45EB, 133-PRJ45EC) provided generous financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bleiweiss.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11692_2015_9343_MOESM1_ESM.xls

On-line Resource 1: E-Table 1. Excel spreadsheet list and details for the 14 species and 36 specimens used for the study (XLS 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bleiweiss, R. Extrinsic Versus Intrinsic Control of Avian Communication Based on Colorful Plumage Porphyrins. Evol Biol 42, 483–501 (2015). https://doi.org/10.1007/s11692-015-9343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9343-6

Keywords

Navigation