Skip to main content
Log in

Patterns of Fluctuating Selection on Morphological and Reproductive Traits in Female Tree Swallow (Tachycineta bicolor)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Temporally replicated studies are essential to describe and understand selection in natural populations. Selection patterns can differ among life stages representing different fitness components. Despite the increasing number of long-term studies, yearly estimates of fluctuation in strength and direction are mostly available from studies conducted on a limited number of years. Based on a population of Tree swallows (Tachycineta bicolor) monitored over 10,200 km2 in Southern Québec, Canada, since 2004, we investigated how patterns of selection may change across breeding stages by dividing the overall selection at the nesting stage (number of fledglings produced) into hatchling (number of hatchlings produced) and fledgling (number of hatchlings having successfully fledged) selection stages. We assessed fluctuation in selection gradients on two morphological (body mass and wing length) and two reproductive (laying date and clutch size) traits in females. We found significant positive selection gradients for body mass and clutch size and negative selection gradients for laying date, though the latter only during the fledgling selection stage. We also found that selection gradients on reproductive traits significantly fluctuated in direction and/or strength among years but only during the hatchling breeding stage. Our results thus emphasize the need to consider how selection events may be fluctuating in time and among breeding stages and the importance of these patterns for the maintenance of phenotypic variation in wild populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold, S. J., & Duvall, D. (1994). Animal mating systems: A synthesis based on selection theory. The American Naturalist, 143(2), 317–348. doi:10.2307/2462646.

    Article  Google Scholar 

  • Arnold, S. J., & Wade, M. J. (1984). On the measurement of natural and sexual selection: Applications. Evolution, 38(4), 720–734. doi:10.2307/2408384.

    Article  Google Scholar 

  • Bell, G. (2010). Fluctuating selection: The perpetual renewal of adaptation in variable environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 87–97. doi:10.1098/rstb.2009.0150.

    Article  Google Scholar 

  • Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006). Climate change and population declines in a long-distance migratory bird. Nature, 441(7089), 81–83. doi:10.1038/nature04539.

    Article  CAS  PubMed  Google Scholar 

  • Bowlin, M. S., & Winkler, D. W. (2004). Natural variation in flight performance is related to timing of breeding in three swallows (Tachycineta bicolor) in New York. The Auk, 121(2), 345–353. doi:10.1642/0004-8038(2004)121[0345:nvifpi]2.0.co;2.

    Article  Google Scholar 

  • Carroll, S. P., Hendry, A. P., Reznick, D. N., & Fox, C. W. (2007). Evolution on ecological time-scales. Functional Ecology, 21(3), 387–393. doi:10.1111/j.1365-2435.2007.01289.x.

    Article  Google Scholar 

  • Charmantier, A., McCleery, R. H., Cole, L. R., Perrins, C., Kruuk, L. E. B., & Sheldon, B. C. (2008). Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science, 320(5877), 800–803. doi:10.1126/science.1157174.

    Article  CAS  PubMed  Google Scholar 

  • Chenoweth, S. F., & Blows, M. W. (2005). Contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. The American Naturalist, 165(2), 281–289. doi:10.1086/427271.

    Article  PubMed  Google Scholar 

  • Darimont, C. T., Carlson, S. M., Kinnison, M. T., Paquet, P. C., Reimchen, T. E., & Wilmers, C. C. (2009). Human predators outpace other agents of trait change in the wild. Proceedings of the National Academy of Sciences, 106(3), 952–954. doi:10.1073/pnas.0809235106.

    Article  CAS  Google Scholar 

  • Dunn, P. O., Winkler, D. W., Whittingham, L. A., Hannon, S. J., & Robertson, R. J. (2011). A test of the mismatch hypothesis: How is timing of reproduction related to food abundance in an aerial insectivore? Ecology, 92(2), 450–461. doi:10.1890/10-0478.1.

    Article  PubMed  Google Scholar 

  • Endler, J. A. (1986). Natural selection in the wild. Princeton: Princeton University Press.

    Google Scholar 

  • Garant, D., Hadfield, J. D., Kruuk, L. E. B., & Sheldon, B. C. (2008). Stability of genetic variance and covariance for reproductive characters in the face of climate change in a wild bird population. Molecular Ecology, 17(1), 179–188. doi:10.1111/j.1365-294X.2007.03436.x.

    Article  PubMed  Google Scholar 

  • Garant, D., Kruuk, L. E. B., McCleery, R. H., & Sheldon, B. C. (2007). The effects of environmental heterogeneity on multivariate selection on reproductive traits in female great tits. Evolution, 61(7), 1546–1559. doi:10.1111/j.1558-5646.2007.00128.x.

    Article  PubMed  Google Scholar 

  • Ghalambor, C. K., McKay, J. K., Carroll, S. P., & Reznick, D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology, 21(3), 394–407. doi:10.1111/j.1365-2435.2007.01283.x.

    Article  Google Scholar 

  • Ghilain, A., & Bélisle, M. (2008). Breeding success of tree swallows along a gradient of agricultural intensification. Ecological Applications, 18(5), 1140–1154. doi:10.1890/07-1107.1.

    Article  PubMed  Google Scholar 

  • Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., & Merilä, J. (2008). Climate change and evolution: Disentangling environmental and genetic responses. Molecular Ecology, 17(1), 167–178. doi:10.1111/j.1365-294X.2007.03413.x.

    Article  CAS  PubMed  Google Scholar 

  • Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin’s finches. Science, 296(5568), 707–711.

    Article  CAS  PubMed  Google Scholar 

  • Heaney, V., & Monaghan, P. (1996). Optimal allocation of effort between reproductive phases: The trade-off between incubation costs and subsequent brood rearing capacity. Proceedings of the Royal Society of London. Series B: Biological Sciences, 263(1377), 1719–1724. doi:10.1098/rspb.1996.0251.

    Article  Google Scholar 

  • Hendry, A. P., Farrugia, T. J., & Kinnison, M. T. (2008). Human influences on rates of phenotypic change in wild animal populations. Molecular Ecology, 17(1), 20–29. doi:10.1111/j.1365-294X.2007.03428.x.

    Article  PubMed  Google Scholar 

  • Husby, A., Hille, S. M., & Visser, M. E. (2011a). Testing mechanisms of Bergmann’s rule: Phenotypic decline but no genetic change in body size in three passerine bird populations. The American Naturalist, 178(2), 202–213. doi:10.1086/660834.

    Article  PubMed  Google Scholar 

  • Husby, A., Visser, M. E., & Kruuk, L. E. B. (2011b). Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biology, 9(2), e1000585. doi:10.1371/journal.pbio.1000585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawecki, T. J., & Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7(12), 1225–1241.

    Article  Google Scholar 

  • Kingsolver, J. G., Diamond, S. E., Siepielski, A. M., & Carlson, S. M. (2012). Synthetic analyses of phenotypic selection in natural populations: Lessons, limitations and future directions. Evolutionary Ecology, 26(5), 1101–1118. doi:10.1007/s10682-012-9563-5.

    Article  Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37(6), 1210–1226. doi:10.2307/2408842.

    Article  Google Scholar 

  • Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O., & Dobson, F. S. (2012). Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature, 489(7417), 554–557. doi:10.1038/nature11335.

    Article  CAS  PubMed  Google Scholar 

  • Lebigre, C., Arcese, P., & Reid, J. M. (2013). Decomposing variation in male reproductive success: Age-specific variances and covariances through extra-pair and within-pair reproduction. Journal of Animal Ecology, 82(4), 872–883. doi:10.1111/1365-2656.12063.

    Article  PubMed  Google Scholar 

  • Lessard, A., Bourret, A., Bélisle, M., Pelletier, F., & Garant, D. (2014). Individual and environmental determinants of reproductive success in male tree swallow (Tachycineta bicolor). Behavioral Ecology and Sociobiology, 68(5), 733–742. doi:10.1007/s00265-014-1686-y.

    Article  Google Scholar 

  • Martin, T. E., & Schwabl, H. (2008). Variation in maternal effects and embryonic development rates among passerine species. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1497), 1663–1674. doi:10.1098/rstb.2007.0009.

    Article  Google Scholar 

  • McGlothlin, J. W. (2010). Combining selective episodes to estimate lifetime nonlinear selection. Evolution, 64(5), 1377–1385. doi:10.2307/40663892.

    PubMed  Google Scholar 

  • Møller, A. P. (2013). Long-term trends in wind speed, insect abundance and ecology of an insectivorous bird. Ecosphere, 4(1), 6. doi:10.1890/es12-00310.1.

    Article  Google Scholar 

  • Møller, A. P., Chabi, Y., Cuervo, J. J., De Lope, F., Kilpimaa, J., Kose, M., et al. (2006). An analysis of continent-wide patterns of sexual selection in a passerine bird. Evolution, 60(4), 856–868. doi:10.1111/j.0014-3820.2006.tb01162.x.

    Article  PubMed  Google Scholar 

  • Møller, A. P., & Szép, T. (2002). Survival rate of adult barn swallos Hirundo rustica in relation to sexual selection and reproduction. Ecology, 83(8), 2220–2228. doi:10.1890/0012-9658(2002)083[2220:sroabs]2.0.co;2.

    Article  Google Scholar 

  • Morrissey, M. B., & Hadfield, J. D. (2012). Directional selection in temporally replicated studies is remarkably consistent. Evolution, 66(2), 435–442. doi:10.1111/j.1558-5646.2011.01444.x.

    Article  PubMed  Google Scholar 

  • Nooker, J. K., Dunn, P. O., Whittingham, L. A., & Murphy, M. T. (2005). Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). The Auk, 122(4), 1225–1238. doi:10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2.

    Article  Google Scholar 

  • Perrins, C. M. (1970). The timing of birds’ breeding seasons. Ibis, 112(2), 242–255. doi:10.1111/j.1474-919X.1970.tb00096.x.

    Article  Google Scholar 

  • Pischedda, A., & Rice, W. R. (2012). Partitioning sexual selection into its mating success and fertilization success components. Proceedings of the National Academy of Sciences, 109(6), 2049–2053. doi:10.1073/pnas.1110841109.

    Article  CAS  Google Scholar 

  • Porlier, M., Charmantier, A., Bourgault, P., Perret, P., Blondel, J., & Garant, D. (2012). Variation in phenotypic plasticity and selection patterns in blue tit breeding time: Between- and within-population comparisons. Journal of Animal Ecology, 81(5), 1041–1051. doi:10.1111/j.1365-2656.2012.01996.x.

    Article  PubMed  Google Scholar 

  • Przybylo, R., Sheldon, B. C., & Merilä, J. (2000). Patterns of natural selection on morphology of male and female collared flycatchers (Ficedula albicollis). Biological Journal of the Linnean Society, 69(2), 213–232. doi:10.1111/j.1095-8312.2000.tb01199.x.

    Article  Google Scholar 

  • R Development Core Team. (2013). R: A language and environment for statistical computing. Vienna: Austria.

    Google Scholar 

  • Reed, T. E., Jenouvrier, S., & Visser, M. E. (2013). Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. Journal of Animal Ecology, 82(1), 131–144. doi:10.1111/j.1365-2656.2012.02020.x.

    Article  PubMed  Google Scholar 

  • Reid, J. M., Monaghan, P., & Ruxton, G. D. (2000). Resource allocation between reproductive phases: The importance of thermal conditions in determining the cost of incubation. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1438), 37–41. doi:10.1098/rspb.2000.0963.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rioux Paquette, S., Garant, D., Pelletier, F., & Bélisle, M. (2013). Seasonal patterns in Tree Swallow prey (Diptera) abundance are affected by agricultural intensification. Ecological Applications, 23(1), 122–133. doi:10.1890/12-0068.1.

    Article  Google Scholar 

  • Rioux Paquette, S., Pelletier, F., Garant, D., & Bélisle, M. (2014). Severe recent decrease of adult body mass in a declining insectivorous bird population. Proceedings of the Royal Society B: Biological Sciences,. doi:10.1098/rspb.2014.0649.

    PubMed Central  PubMed  Google Scholar 

  • Robillard, A., Garant, D., & Bélisle, M. (2013). The Swallow and the Sparrow: How agricultural intensification affects abundance, nest site selection and competitive interactions. Landscape Ecology, 28(2), 201–215. doi:10.1007/s10980-012-9828-y.

    Article  Google Scholar 

  • Schluter, D., Price, T. D., & Rowe, L. (1991). Conflicting selection pressures and life history trade-offs. Proceedings of the Royal Society of London. Series B: Biological Sciences, 246(1315), 11–17. doi:10.1098/rspb.1991.0118.

    Article  Google Scholar 

  • Sheldon, B. C., Kruuk, L. E. B., & Merilä, J. (2003). Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution, 57(2), 406–420. doi:10.1111/j.0014-3820.2003.tb00274.x.

    Article  CAS  PubMed  Google Scholar 

  • Shutler, D., Hussell, D. J. T., Norris, D. R., Winkler, D. W., Robertson, R. J., Bonier, F., et al. (2012). Spatiotemporal patterns in nest box occupancy by Tree swallows across North America. Avian Conservation and Ecology, 7(1), 3. doi:10.5751/ace-00517-070103.

    Article  Google Scholar 

  • Siepielski, A. M., DiBattista, J. D., & Carlson, S. M. (2009). It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecology Letters, 12(11), 1261–1276.

    Article  PubMed  Google Scholar 

  • Siepielski, A. M., DiBattista, J. D., Evans, J. A., & Carlson, S. M. (2011). Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proceedings of the Royal Society B: Biological Sciences, 278(1711), 1572–1580. doi:10.1098/rspb.2010.1973.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tarka, M., Akesson, M., Hasselquist, D., & Hansson, B. (2014). Intralocus sexual conflict over wing length in a wild migratory bird. The American Naturalist, 183(1), 62–73.

    Article  PubMed  Google Scholar 

  • Tarwater, C. E., & Beissinger, S. R. (2013). Opposing selection and environmental variation modify optimal timing of breeding. Proceedings of the National Academy of Sciences, 110(38), 15365–15370. doi:10.1073/pnas.1303821110.

    Article  CAS  Google Scholar 

  • Teplitsky, C., Mouawad, N. G., Balbontin, J., De Lope, F., & Møller, A. P. (2011). Quantitative genetics of migration syndromes: A study of two barn swallow populations. Journal of Evolutionary Biology, 24(9), 2025–2039. doi:10.1111/j.1420-9101.2011.02342.x.

    Article  CAS  PubMed  Google Scholar 

  • Teplitsky, C., Tarka, M., Møller, A. P., Nakagawa, S., Balbontín, J., Burke, T. A., et al. (2014). Assessing multivariate constraints to evolution across ten long-term avian studies. PLoS ONE, 9(3), e90444. doi:10.1371/journal.pone.0090444.

    Article  PubMed Central  PubMed  Google Scholar 

  • van de Pol, M., & Wright, J. (2009). A simple method for distinguishing within-versus between-subject effects using mixed models. Animal Behaviour, 77, 753–758.

    Article  Google Scholar 

  • van Tienderen, P. H. (2000). Elasticities and the link between demographic and evolutionary dynamics. Ecology, 81(3), 666–679. doi:10.1890/0012-9658(2000)081[0666:eatlbd]2.0.co;2.

    Article  Google Scholar 

  • Verhulst, S., & Nilsson, J.-Å. (2008). The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1490), 399–410. doi:10.1098/rstb.2007.2146.

    Article  Google Scholar 

  • Yeh, P. J., & Price, T. D. (2004). Adaptive phenotypic plasticity and the successful colonization of a novel environment. The American Naturalist, 164(4), 531–542. doi:10.1086/423825.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank all the students and field assistants who helped gathering the data over the years, as well as the 40 farms owners for providing access to their land. We thank Cédric Frenette Dussault and three anonymous reviewers for comments on a previous draft version. This work was funded by grants from the Fonds de Recherche du Québec—Nature et Technologies (FRQNT) (D. G., F. P., M. B.), by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grants (D. G., F. P., M. B.) and by the Canada Research Chairs program (F.P., M. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dany Garant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millet, A., Pelletier, F., Bélisle, M. et al. Patterns of Fluctuating Selection on Morphological and Reproductive Traits in Female Tree Swallow (Tachycineta bicolor). Evol Biol 42, 349–358 (2015). https://doi.org/10.1007/s11692-015-9333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9333-8

Keywords

Navigation