Skip to main content
Log in

Locomotor Mode and the Evolution of the Hindlimb in Western Mediterranean Anurans

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The evolutionary association between morphology, locomotor performance and habitat use is a central element of the ecomorphological paradigm, and it is known to underlie the evolution of phenotypic diversity in numerous animal taxa. In anuran amphibians the hindlimb acts as the propulsive agent, and as such, it is directly associated with jumping performance. In this study we combine individual- and species-level analyses to examine the effects of locomotor mode on body size and hindlimb morphology of Western Mediterranean anurans. In addition to the commonly studied hindlimb traits, we also examine the ratio between tibiofibula and femur length. Body size shows no signs of an evolutionary association to locomotor mode. Instead, hindlimb traits are significantly differentiated between locomotor groups, both at the individual and species levels. Specifically, we observe a gradient of tibiofibula to femur ratio values that matches biomechanical predictions. The analysis of adult static allometries indicates that these differences arise early in ontogeny. By comparing the fit of distinct evolutionary models we provide evidence that the locomotor mode adopted by each species to match the requirements of the habitat it frequents has shaped the evolution of the hindlimb, but not body size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araújo, M. B., & Pearson, R. G. (2005). Equilibrium of species’ distributions with climate. Ecography, 28, 693–695.

    Article  Google Scholar 

  • Arnold, S. J. (1983). Morphology, performance and fitness. American Zoologist, 23, 347–361.

    Google Scholar 

  • Beaulieu, J. M., & O’Meara, B. (2014). OUwie: Analysis of evolutionary rates in an OU framework. R package version 1.43. http://CRAN.R-project.org/package=OUwie

  • Biewener, A. A. (1983). Locomotory stresses in the limb bones of two small mammals: The ground squirrel and chipmunk. Journal of Experimental Biology, 103, 131–154.

    CAS  PubMed  Google Scholar 

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    Article  PubMed  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: A practical information-theoretic approach. The Netherlands: Springer.

    Google Scholar 

  • Butler, M. A., & King, A. A. (2004). Phylogenetic comparative analysis: A modelling approach for adaptive evolution. The American Naturalist, 164, 683–695.

    Article  Google Scholar 

  • Calow, L. J., & Alexander, R. M. C. N. (1973). A mechanical analysis of a hind leg of a frog (Rana temporaria). Journal of Zoology London, 171, 293–321.

    Article  Google Scholar 

  • Choi, I., Shim, J. H., & Ricklefs, R. E. (2003). Morphometrics relationships of take-off speed in anuran amphibians. Journal of Experimental Zoology, 299, 99–102.

    Article  PubMed  Google Scholar 

  • Collar, D. C., Schulte, J. A., & Losos, J. B. (2011). Evolution of extreme body size disparity in monitor lizards (Varanus). Evolution, 65, 2664–2680.

    Article  PubMed  Google Scholar 

  • Darwin, C. R. (1837–1838). Notebook B: Transmutation of species. http://darwin-online.org.uk/EditorialIntroductions/vanWyhe_notebooks.html.

  • Darwin, C. R. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N.. London: John Murray.

    Google Scholar 

  • Darwin, C. R. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

    Book  Google Scholar 

  • Eastman, J. M., Harmon, L. J., & Tank, D. C. (2013). Congruification: Support for time scaling large phylogenetic trees. Methods in Ecology and Evolution, 4, 688–691.

    Article  Google Scholar 

  • Eberhard, W. G. (2008). Static allometry and animal genitalia. Evolution, 63, 48–66.

    Article  PubMed  Google Scholar 

  • Emerson, S. B. (1976). Burrowing in frogs. Journal of Morphology, 149, 437–458.

    Article  Google Scholar 

  • Emerson, S. B. (1978). Allometry and jumping in frogs: Helping the twain to meet. Evolution, 32, 551–564.

    Article  Google Scholar 

  • Emerson, S. B. (1979). The ilio-sacral articulation in frogs: Form and function. Biological Journal of the Linnean Society, 11, 153–168.

    Article  Google Scholar 

  • Emerson, S. B. (1985). Jumping and leaping. In M. E. Hildebrand, D. Bramble, K. Laim, & D. Wake (Eds.), Functional vertebrate morphology (pp. 58–76). Cambridge, MA: Harvard Univ. Press.

    Google Scholar 

  • Emerson, S. B. (1986). Heterochrony and frogs: The relationship of a life-history trait to morphological form. American Naturalist, 127, 167–183.

    Article  Google Scholar 

  • Emerson, S. B. (1988). Convergence and morphological constraint in frogs: Variation in postcranial morphology. Fieldiana Zoological, 43, 1–19.

    Google Scholar 

  • García-París, M., Montori, A., & Herrero, P. (2004). Amphibia: Lissamphibia. In M. A. Ramos (Ed.), Fauna Ibérica (Vol. 24). Madrid: Museo Nacional de Ciencias Naturales. CSIC.

    Google Scholar 

  • Gomes, F. R., Rezende, E. L., Grizante, M. B., & Navas, C. A. (2009). The evolution of jumping performance in anurans: Morphological correlates and ecological implications. Journal of Evolutionary Biology, 22, 1088–1097.

    Article  CAS  PubMed  Google Scholar 

  • Gómez, A., & Lunt, D. H. (2007). Refugia within refugia: Patterns of phylogeograpic concordance in the Iberian Peninsula. In S. Weiss & N. Ferrand (Eds.), Phylogeography of southern European refugia. The Netherlands: Springer.

    Google Scholar 

  • Gomez-Mestre, I., & Buchholz, D. R. (2006). Developmental plasticity mirrors differences among taxa in spadefoot toads linking plasticity and diversity. Proceedings of the National Academy of Sciences USA, 103(50), 19021–19026.

    Article  CAS  Google Scholar 

  • Gomez-Mestre, I., Saccoccio, V. L., Iijima, T., Collins, E. M., Rosenthal, G. G., & Warkentin, K. M. (2010). The shape of things to come: Linking developmental plasticity to postmetamorphic morphology in anurans. Journal of Evolutionary Biology, 23, 1364–1373.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–640.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J. (1968). Animal locomotion. London: William Cloes and Sons Ltd.

    Google Scholar 

  • Grizante, M. B., Navas, C. A., Garland, T., & Kohlsdorf, T. (2010). Morphological evolution in Tropidurinae squamates: An integrated view along a continuum of ecological settings. Journal of Evolutionary Biology, 23, 98–111.

    Article  CAS  PubMed  Google Scholar 

  • Handrigan, G. R., & Wassersug, R. J. (2007). The anuran Bauplan: A review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology. Biological Reviews, 82, 1–25.

    Article  PubMed  Google Scholar 

  • Hansen, T. F. (1997). Stabilizing selection and the comparative analysis of adaptation. Evolution, 51, 1341–1351.

    Article  Google Scholar 

  • Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., & Challenger, W. (2008). GEIGER: Investigating evolutionary radiations. Bioinformatics, 24, 129–131.

    Article  CAS  PubMed  Google Scholar 

  • Harrington, S. M., Harrison, L. B., & Sheil, C. A. (2013). Ossification sequence heterochrony among amphibians. Evolution & Development, 15, 344–364.

    CAS  Google Scholar 

  • Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.

    Article  Google Scholar 

  • Hewitt, G. M. (2001). Speciation, hybrid zones and phylogeography–or seeing genes in space and time. Molecular Ecology, 10, 537–549.

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand, M. (1974). Analysis of vertebrate structure. New York: John Wiley and Sons.

    Google Scholar 

  • Irschick, D. J., Meyers, J. J., Husak, J. F., & Le Galliard, J. F. (2008). How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evolutionary Ecology Research, 10, 177–196.

    Google Scholar 

  • Jorgensen, M. E., & Reilly, S. M. (2013). Phylogenetic patterns of skeletal morphometrics and pelvic traits in relation to locomotor mode in frogs. Journal of Evolutionary Biology, 26, 929–943.

    Article  CAS  PubMed  Google Scholar 

  • Kingsolver, J. G., & Huey, R. B. (2003). Introduction: The evolution of morphology, performance, and fitness. Integrative and Comparative Biology, 43, 361–366.

    Article  PubMed  Google Scholar 

  • Koehl, M. A. R. (1996). When does morphology matter? Annual Review of Ecology and Systematics, 27, 501–542.

    Article  Google Scholar 

  • Kohlsdorf, T., Garland, T., & Navas, C. A. (2001). Limb and tail lengths in relation to substrate usage in Tropidurus lizards. Journal of Morphology, 248, 151–164.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. S. Y., Skinner, A., & Camacho, A. (2013). The relationship between limb reduction, body elongation and geographical range in lizards (Lerista, Scincidae). Journal of Biogeography, 40, 1290–1297.

    Article  Google Scholar 

  • Llewelyn, J., Phillips, B. L., Alford, R. A., Schwarzkopf, L., & Shine, R. (2010). Locomotor performance in an invasive species: Cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia, 162, 343–348.

    Article  PubMed  Google Scholar 

  • Losos, J. B. (2009). Lizards in an evolutionary tree: Ecology and adaptive radiations of anoles. Berkeley, CA: Univ. of California Press.

    Google Scholar 

  • Losos, J. B. (2011). Convergence, adaptation, and constraints. Evolution, 65, 1827–1840.

    Article  PubMed  Google Scholar 

  • Lowe, W. H., & McPeek, M. A. (2012). Can natural selection maintain long-distance dispersal? Insight from a stream salamander system. Evolutionary Ecology, 26, 11–24.

    Article  Google Scholar 

  • Mahler, D. L., Revell, L. J., Glor, R. E., & Losos, J. B. (2010). Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution, 64, 2731–2745.

    Article  PubMed  Google Scholar 

  • Martínez-Solano, I., Gonçalves, H. A., Arntzen, J. W., & García-París, M. (2004). Phylogentic relationships and biogeography of midwife toads (Discoglossidae: Alytes). Journal of Biogeography, 31, 603–618.

    Article  Google Scholar 

  • Moen, D. S., & Wiens, J. J. (2009). Phylogenetic evidence for competitively-driven divergence: Body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). Evolution, 63, 195–214.

    Article  CAS  PubMed  Google Scholar 

  • Nomura, F., Rossa-Feres, D. C., & Langeani, F. (2009). Burrowing behavior of Dermatonotus muelleri (Anura, Microhylidae) with reference to the origin of the burrowing behavior of Anura. Journal of Ethology, 27, 195–201.

    Article  Google Scholar 

  • Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., & Isaac, N., et al. (2012). Caper: Comparative analyses of phylogenetics and evolution in R. R package version 0.5. http://CRAN.R-project.org/package=caper

  • Pagel, M. (1994). Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London. Series B: Biological Sciences, 255, 37–45.

    Article  Google Scholar 

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analysis of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Pough, F. H., Magnusson, W. E., Ryan, M. J., Wells, K. D., & Taigen, T. L. (1992). Behavioral energetics. In M. E. Ferder & W. W. Burggren (Eds.), Environmental physiology of amphibians. Chicago: The Univ. Chicago Press.

    Google Scholar 

  • Pounds, J. A., Jackson, J. F., & Shively, S. H. (1983). Allometric growth of the hind limbs of some terrestrial iguanid lizards. American Midland Naturalist, 110, 201–207.

    Article  Google Scholar 

  • Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and cecilians. Molecular Phylogenetics and Evolution, 61, 543–583.

    Article  PubMed  Google Scholar 

  • Rage, J.-C., & Roček, Z. (2003). Evolution of anuran assemblages in the Tertiary and Quaternary of Europe, in the context of palaeoclimate and palaeogeography. Amphibia-Reptilia, 24, 133–167.

    Article  Google Scholar 

  • Rand, A. S. (1952). Jumping ability of certain anurans, with notes on endurance. Copeia, 1952, 15–20.

    Article  Google Scholar 

  • Revell, L. J. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1, 319–329.

    Article  Google Scholar 

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223.

    Article  Google Scholar 

  • Richter-Boix, A., Llorente, G. A., & Montori, A. (2006). Effects of phenotypic plasticity on post-metamorphic traits during pre-metamorphic stages in the anuran Pelodytes punctatus. Evolutionary Ecology Research, 8, 309–320.

    Google Scholar 

  • Roelants, K., Gower, D. J., Wilkinson, M., Loader, S. P., Biju, S. D., Guillaume, K., et al. (2007). Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences USA, 104, 887–892.

    Article  CAS  Google Scholar 

  • Sanger, T. J., Sherratt, E., McGlothlin, J. W., Brodie, E. D, I. I. I., Losos, J. B., & Abzhanov, A. (2013). Convergent evolution of sexual dimorphism in skull shape using distinct developmental strategies. Evolution, 67, 2180–2193.

    Article  PubMed  Google Scholar 

  • Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 1–13.

    Article  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (2012). Biometry (4th ed.). New York: W.H. Freeman & Co.

    Google Scholar 

  • Trochet, A., Moulherat, S., Calvez, O., Stevens, V. M., Clobert, J., & Schmeller, D. S. (2014). A database of life-history traits of European amphibians. Biodiversity Data Journal, 2, e4123.

    Article  PubMed  Google Scholar 

  • Vera, M. C., & Ponssa, M. L. (2014). Skeletogenesis in anurans: Cranial and postcranial development in metamorphic and postmetamorphic stages of Leptodactylus bufonius (Anura: Leptodactylidae). Acta Zoologica Stockholm, 95, 44–62.

    Article  Google Scholar 

  • Vidal-García, M., Byrne, P. G., Roberts, J. D., & Keogh, J. S. (2014). The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. Journal of Evolutionary Biology, 27, 181–192.

    Article  Google Scholar 

  • Warton, D. I., Duursma, R. A., Falster, D. S., & Taskinen, S. (2012). smart 3—an R package for estimation and inference about allometric lines. Methods in Ecology and Evolution, 3, 257–259.

    Article  Google Scholar 

  • Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago and London: The Univ. Chicago Press.

    Book  Google Scholar 

  • Wilson, M. P., Espinoza, N. R., Shah, S. R., & Blob, R. W. (2009). Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion. The Anatomical Record, 292, 935–944.

    Article  PubMed  Google Scholar 

  • Zug, G. R. (1972). Anuran locomotion: Structure and function. 1. Preliminary observations on the relation between jumping and osteometrics of appendicular and postaxial skeleton. Copeia, 1972, 613–624.

    Article  Google Scholar 

  • Zug, G. R. (1978). Anuran locomotion–structure and function, 2: Jumping performance of semiaquatic, terrestrial, and arboreal frogs. Smithson Contributions to Zoology, 276, 1–31.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Museo Nacional de Ciencias Naturales and Jenar Fèlix Franquesa for specimen loans. We are grateful to Ivan Gomez-Mestre and two anonymous reviewers for valuable comments on the manuscript. UEU was supported by a Ph.D. grant (BES-2013-063203) from Ministerio de Economía y Competitividad (MEC). AK was supported by a post-doctoral Grant (SFRH/BPD/68493/2010) by Fundação para a Ciéncia e a Tecnologia (FCT, Portugal), and partially by project “Biodiversity, Ecology and Global Change” co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2–O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urtzi Enriquez-Urzelai.

Additional information

Data available from the Dryad Digital Repository: http://doi.org/10.5061/dryad.d3v78.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enriquez-Urzelai, U., Montori, A., Llorente, G.A. et al. Locomotor Mode and the Evolution of the Hindlimb in Western Mediterranean Anurans. Evol Biol 42, 199–209 (2015). https://doi.org/10.1007/s11692-015-9311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-015-9311-1

Keywords

Navigation