Skip to main content
Log in

Identification and Characterization of Entamoeba histolytica Choline Kinase

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future.

Methodology

E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes.

Results

EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35–48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner’s phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting.

Conclusions

With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information file].

References

  1. Shrivastav MT, Malik Z, Somlata (2021) Revisiting drug development against the neglected tropical disease, amebiasis. Front Cell Infect Microbiol 10:628257. https://doi.org/10.3389/fcimb.2020.628257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martínez-Castillo M, Serrano-Luna J, Coronado-Velázquez D, Pacheco-Yépez J, de la Garza M, Shibayama M (2021) Molecular mechanisms of host immune responses to Entamoeba. In: Liu D (ed) Molecular food microbiology, 1st edn. CRC Press, Florida, pp 461–477

    Chapter  Google Scholar 

  3. Saidin S, Othman N, Noordin R (2019) Update on laboratory diagnosis of amoebiasis. Eur J Clin Microbiol Infect Dis 38:15–38. https://doi.org/10.1007/s10096-018-3379-3

    Article  PubMed  Google Scholar 

  4. Jha AK, Jha P, Chaudhary M, Purkayastha S, Jha SK, Ranjan R, Priyadarshi RN, Kumar R (2019) Evaluation of factors associated with complications in amoebic liver abscess in a predominantly toddy-drinking population: a retrospective study of 198 cases. JGH Open 3:474–479. https://doi.org/10.1002/jgh3.12183

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumanan T, Sujanitha V, Sreeharan N (2020) Amoebic liver abscess: a neglected tropical disease. Lancet Infect Dis 20:160–162. https://doi.org/10.1016/S1473-3099(19)30696-6

    Article  PubMed  Google Scholar 

  6. Negrut N, Khan SA, Bungau S, Zaha DC, Anca CAR, Bratu O, Diaconu C, Ionita-Radu F (2020) Diagnostic challenges in gastrointestinal infections. Rom J Mil Med 123:83–90. https://doi.org/10.55453/rjmm.2020.123.2.1

    Article  Google Scholar 

  7. Tokijoh NI, Saidin S, Abu Bakar A, Othman N, Noordin R (2021) PCR detection of Entamoeba using genus-specific primers from Orang Asli Schoolchildren in Perak. Biosci Res 18:295–307

    Google Scholar 

  8. Bogitsh BJ, Carter CE, Oeltmann TN (2019) Parasite-host interactions. In: Bogitsh BJ, Carter CE, Oeltmann TN (eds) Human parasitology, 5th edn. Academic Press, London, pp 15–34

    Chapter  Google Scholar 

  9. Bogitsh BJ, Carter CE, Oeltmann TN (2019) General characteristics of the Euprotista (Protozoa). In: Bogitsh BJ, Carter CE, Oeltmann TN (eds) Human parasitology, 5th edn. Academic Press, London, pp 35–49

    Chapter  Google Scholar 

  10. Ai S, Zhang Z, Wang X, Zhang Q, Yin W, Duan Z (2021) The first survey and molecular identification of Entamoeba spp. in farm animals on Qinghai-Tibetan Plateau of China. Comp Immunol Microbiol Infect Dis 75:101607. https://doi.org/10.1016/j.cimid.2020.101607

    Article  CAS  PubMed  Google Scholar 

  11. Haapanen S, Parkkila S (2021) Management of Entamoeba histolytica infection: treatment strategies and possible new drug targets. In: Vermelho AB, Supuran CT (eds) Antiprotozoal drug development and delivery. Topics in medicinal chemistry, vol 39. Springer, Berlin/Heidelberg, pp 259–269

    Chapter  Google Scholar 

  12. Carrero JC, Reyes-López M, Serrano-Luna J, Shibayama M, Unzueta J, León-Sicairos N, de la Garza M (2020) Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int J Med Microbiol 310:151358. https://doi.org/10.1016/j.ijmm.2019.151358

    Article  CAS  PubMed  Google Scholar 

  13. Marie C, Petri WAJ (2013) Amoebic dysentery. BMJ Clin Evid 2013:0918

    PubMed  PubMed Central  Google Scholar 

  14. Avila-Blanco ME, Rodríguez MG, Moreno Duque JL, Muñoz-Ortega M, Ventura-Juárez J (2014) Amoebicidal activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants in an amoebic liver abscess hamster model. Evid Based Complement Alternat Med 2014:930208. https://doi.org/10.1155/2014/930208

    Article  PubMed  PubMed Central  Google Scholar 

  15. Oryakhil Q, Hanif M, Irfan M (2021) An update of Vaccine development against Entamoeba histolytica. Eur J Health Sci 6:30–40. https://doi.org/10.47672/ejhs.715

    Article  Google Scholar 

  16. Shrimal S, Saha A, Bhattacharya S, Bhattacharya A (2012) Lipids induce expression of serum-responsive transmembrane kinase EhTMKB1-9 in an early branching eukaryote Entamoeba histolytica. Sci Rep 2:333. https://doi.org/10.1038/srep00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Espinosa-Cantellano M, Martínez-Palomo A (2000) Pathogenesis of intestinal amebiasis: from molecules to disease. Clin Microbiol Rev 13:318–331. https://doi.org/10.1128/CMR.13.2.318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castellanos-Castro S, Bolaños J, Orozco E (2020) Lipids in Entamoeba histolytica: host-dependence and virulence factors. Front Cell Infect Microbiol 10:75. https://doi.org/10.3389/fcimb.2020.00075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aley SB, Scott WA, Cohn ZA (1980) Plasma membrane of Entamoeba histolytica. J Exp Med 152:391–404. https://doi.org/10.1084/jem.152.2.391

    Article  CAS  PubMed  Google Scholar 

  20. Lykidis A (2007) Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res 46:171–199. https://doi.org/10.1016/j.plipres.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  21. Zimmerman T, Moneriz C, Diez A, Bautista JM, Gómez Del Pulgar T, Cebrián A, Lacal JC (2013) Antiplasmodial activity and mechanism of action of RSM-932A, a promising synergistic inhibitor of Plasmodium falciparum choline kinase. Antimicrob Agents Chemother 57:5878–5888. https://doi.org/10.1128/AAC.00920-13

    Article  PubMed  PubMed Central  Google Scholar 

  22. Serrán-Aguilera L, Denton H, Rubio-Ruiz B, López-Gutiérrez B, Entrena A, Izquierdo L, Smith TK, Conejo-García A, Hurtado-Guerrero R (2016) Plasmodium falciparum choline kinase inhibition leads to a major decrease in Phosphatidylethanolamine causing parasite death. Sci Rep 6:33189. https://doi.org/10.1038/srep33189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choubey V, Maity P, Guha M, Kumar S, Srivastava K, Puri SK, Bandyopadhyay U (2007) Inhibition of Plasmodium falciparum choline kinase by hexadecyltrimethylammonium bromide: a possible antimalarial mechanism. Antimicrob Agents Chemother 51:696–706. https://doi.org/10.1128/aac.00919-06

    Article  CAS  PubMed  Google Scholar 

  24. Ancelin ML, Calas M, Vidal-Sailhan V, Herbuté S, Ringwald P, Vial HJ (2003) Potent inhibitors of Plasmodium phospholipid metabolism with a broad spectrum of in vitro antimalarial activities. Antimicrob Agents Chemother 47:2590–2597. https://doi.org/10.1128/AAC.47.8.2590-2597.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choubey V, Guha M, Maity P, Kumar S, Raghunandan R, Maulik PR, Mitra K, Halder UC, Bandyopadhyay U (2006) Molecular characterization and localization of Plasmodium falciparum choline kinase. Biochim Biophys Acta 1760:1027–1038. https://doi.org/10.1016/j.bbagen.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  26. Diamond LS, Harlow DR, Cunnick CC (1978) A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba. Trans R Soc Trop Med Hyg 72:431–432. https://doi.org/10.1016/0035-9203(78)90144-x

    Article  CAS  PubMed  Google Scholar 

  27. Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: Analysis and visualization of genetic variation. EMBnet News 4. https://www.funet.fi/pub/sci/molbio/historical/embnet.news/em4-2.pdf. Accessed 7 Nov 2023

  28. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. https://doi.org/10.1093/nar/gkp335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brundiers R, Lavie A, Veit T, Reinstein J, Schlichting I, Ostermann N, Goody RS, Konrad M (1999) Modifying human thymidylate kinase to potentiate azidothymidine activation. J Biol Chem 274:35289–35292. https://doi.org/10.1074/jbc.274.50.35289

    Article  CAS  PubMed  Google Scholar 

  31. Gardberg A, Shuvalova L, Monnerjahn C, Konrad M, Lavie A (2003) Structural basis for the dual thymidine and thymidylate kinase activity of herpes thymidine kinases. Structure 11:1265–1277. https://doi.org/10.1016/j.str.2003.09.003

    Article  CAS  PubMed  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  33. Lee C, Levin A, Branton D (1987) Copper staining: a five-minute protein stain for sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem 166:308–312. https://doi.org/10.1016/0003-2697(87)90579-3

    Article  CAS  PubMed  Google Scholar 

  34. Koelle MR, Horvitz HR (1996) EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84:115–125. https://doi.org/10.1016/s0092-8674(00)80998-8

    Article  CAS  PubMed  Google Scholar 

  35. Aoyama C, Yamazaki N, Terada H, Ishidate K (2000) Structure and characterization of the genes for murine choline/ethanolamine kinase isozymes alpha and beta. J Lipid Res 41:452–464. https://doi.org/10.1016/S0022-2275(20)34484-9

    Article  CAS  PubMed  Google Scholar 

  36. Yamashita S, Hosaka K (1997) Choline kinase from yeast. Biochim Biophys Acta 1348:63–69. https://doi.org/10.1016/s0005-2760(97)00104-5

    Article  CAS  PubMed  Google Scholar 

  37. Ishidate K, Furusawa K, Nakazawa Y (1985) Complete co-purification of choline kinase and ethanolamine kinase from rat kidney and immunological evidence for both kinase activities residing on the same enzyme protein(s) in rat tissues. Biochim Biophys Acta 836:119–124. https://doi.org/10.1016/0005-2760(85)90227-9

    Article  CAS  PubMed  Google Scholar 

  38. Kim KH, Voelker DR, Flocco MT, Carman GM (1998) Expression, purification, and characterization of choline kinase, product of the CKI gene from Saccharomyces cerevisiae. J Biol Chem 273:6844–6852. https://doi.org/10.1074/jbc.273.12.6844

    Article  CAS  PubMed  Google Scholar 

  39. Gee P, Kent C (2003) Multiple isoforms of choline kinase from Caenorhabditis elegans: cloning, expression, purification, and characterization. Biochim Biophys Acta 1648:33–42. https://doi.org/10.1016/S1570-9639(03)00106-7

    Article  CAS  PubMed  Google Scholar 

  40. Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K (2002) Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol 32:655–675. https://doi.org/10.1016/S0020-7519(02)00006-1

    Article  CAS  PubMed  Google Scholar 

  41. van Meer G, de Kroon AIPM (2011) Lipid map of the mammalian cell. J Cell Sci 124:5–8. https://doi.org/10.1242/jcs.071233

    Article  CAS  PubMed  Google Scholar 

  42. Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. Prog Lipid Res 42:115–162. https://doi.org/10.1016/s0163-7827(02)00050-4

    Article  CAS  PubMed  Google Scholar 

  43. Vasilopoulos G, Moser R, Petersen J, Aktas M, Narberhaus F (2021) Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae. Biochim Biophys Acta Mol Cell Biol Lipids 1866:158926. https://doi.org/10.1016/j.bbalip.2021.158926

    Article  CAS  PubMed  Google Scholar 

  44. Husain A, Sato D, Jeelani G, Mi-ichi F, Ali V, Suematsu M, Soga T, Nozaki T (2010) Metabolome analysis revealed increase in S-methylcysteine and phosphatidylisopropanolamine synthesis upon L-cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica. J Biol Chem 285:39160–39170. https://doi.org/10.1074/jbc.M110.167304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jeelani G, Nozaki T (2014) Metabolomic analysis of Entamoeba: applications and implications. Curr Opin Microbiol 20:118–124. https://doi.org/10.1016/j.mib.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  46. Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci U S A 92:6518–6521. https://doi.org/10.1073/pnas.92.14.6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Avron B, Chayen A (1988) Biochemistry of Entamoeba - a review. Cell Biochem Funct 6:71–86. https://doi.org/10.1002/cbf.290060202

    Article  CAS  Google Scholar 

  48. Martin JB, Bakker-Grunwald T, Klein G (1993) 31P-NMR analysis of Entamoeba histolytica. Occurrence of high amounts of two inositol phosphates. Eur J Biochem 214:711–718. https://doi.org/10.1111/j.1432-1033.1993.tb17972.x

    Article  CAS  PubMed  Google Scholar 

  49. Ishidate K, Iida K, Tadokoro K, Nakazawa Y (1985) Evidence for the existence of multiple forms of choline (ethanolamine) kinase in rat tissues. Biochim Biophys Acta 833:1–8. https://doi.org/10.1016/0005-2760(85)90246-2

    Article  CAS  PubMed  Google Scholar 

  50. Lykidis A, Wang J, Karim MA, Jackowski S (2001) Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway. J Biol Chem 276:2174–2179. https://doi.org/10.1074/jbc.M008794200

    Article  CAS  PubMed  Google Scholar 

  51. Porter TJ, Kent C (1990) Purification and characterization of choline/ethanolamine kinase from rat liver. J Biol Chem 265:414–422. https://doi.org/10.1016/S0021-9258(19)40246-9

    Article  CAS  PubMed  Google Scholar 

  52. Alberge B, Gannoun-Zaki L, Bascunana C, Tran van Ba C, Vial H, Cerdan R (2009) Comparison of the cellular and biochemical properties of Plasmodium falciparum choline and ethanolamine kinases. Biochem J 425:149–158. https://doi.org/10.1042/BJ20091119

    Article  PubMed  Google Scholar 

  53. Gibellini F, Hunter WN, Smith TK (2008) Biochemical characterization of the initial steps of the Kennedy pathway in Trypanosoma brucei: the ethanolamine and choline kinases. Biochem J 415:135–144. https://doi.org/10.1042/BJ20080435

    Article  CAS  PubMed  Google Scholar 

  54. Aoyama C, Liao H, Ishidate K (2004) Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43:266–281. https://doi.org/10.1016/j.plipres.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  55. See Too WC, Wong MT, Few LL, Konrad M (2010) Highly specific antibodies for co-detection of human choline kinase α1 and α2 isoforms. PLoS One 5:e12999. https://doi.org/10.1371/journal.pone.0012999

    Article  CAS  PubMed Central  Google Scholar 

  56. Cavalier-Smith T (1985) Selfish DNA and the origin of introns. Nature 315:283–284. https://doi.org/10.1038/315283b0

    Article  CAS  PubMed  Google Scholar 

  57. Chang CC, Few LL, Konrad M, See Too WC (2016) Phosphorylation of human choline kinase beta by protein kinase a: its impact on activity and inhibition. PLoS One 11:e0154702. https://doi.org/10.1371/journal.pone.0154702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uchida T, Yamashita S (1990) Purification and properties of choline kinase from rat brain. Biochim Biophys Acta 1043:281–288. https://doi.org/10.1016/0005-2760(90)90028-V

    Article  CAS  PubMed  Google Scholar 

  59. Ehrenkaufer GM, Haque R, Hackney JA, Eichinger DJ, Singh U (2007) Identification of developmentally regulated genes in Entamoeba histolytica: insights into mechanisms of stage conversion in a protozoan parasite. Cell Microbiol 9:1426–1444. https://doi.org/10.1111/j.1462-5822.2006.00882.x

    Article  CAS  PubMed  Google Scholar 

  60. Gossell-Williams M, Fletcher H, McFarlane-Anderson N, Jacob A, Patel J, Zeisel S (2005) Dietary intake of choline and plasma choline concentrations in pregnant women in Jamaica. West Indian Med J 54:355–359. https://doi.org/10.1590/s0043-31442005000600002

    Article  CAS  PubMed  Google Scholar 

  61. Wu WI, Carman GM (1994) Regulation of phosphatidate phosphatase activity from the yeast Saccharomyces cerevisiae by nucleotides. J Biol Chem 269:29495–29501. https://doi.org/10.1016/S0021-9258(18)43907-5

    Article  CAS  PubMed  Google Scholar 

  62. Kim IB, Park DK, Oh SJ, Chun MH (1998) Horizontal cells of the rat retina show choline acetyltransferase- and vesicular acetylcholine transporter-like immunoreactivities during early postnatal developmental stages. Neurosci Lett 253:83–86. https://doi.org/10.1016/S0304-3940(98)00605-3

    Article  CAS  PubMed  Google Scholar 

  63. Gonzales MLM, Dans LF, Sio-Aguilar J (2019) Antiamoebic drugs for treating amoebic colitis. Cochrane Database Syst Rev 2:CD006085. https://doi.org/10.1002/14651858.cd006085.pub3

    Article  Google Scholar 

  64. Ehrenkaufer GM, Eichinger DJ, Singh U (2007) Trichostatin A effects on gene expression in the protozoan parasite Entamoeba histolytica. BMC Genom 8:216. https://doi.org/10.1186/1471-2164-8-216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Malaysia Ministry of Higher Education Fundamental Research Grant Scheme (FRGS), FRGS/1/2021/SKK0/USM/02/34 (203/PPSK/6171299). Chiat Han Chang was financially supported by National Science Fellowship from Ministry of Sciences, Technology and Innovation, Malaysia. We thank the laboratory staff of the School of Health Sciences for their technical assistance.

Funding

This work was supported by the Malaysia Ministry of Higher Education Fundamental Research Grant Scheme (FRGS), FRGS/1/2021/SKK0/USM/02/34 (203/PPSK/6171299).

Author information

Authors and Affiliations

Authors

Contributions

WCST, BHL, and LLF: contributed to the study conception and design. Material preparation, data collection and analysis were performed by CHC. The first draft of the manuscript was written by CHC. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wei Cun See Too or Ling Ling Few.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

This study was approved by the animal ethic committee, Universiti Sains Malaysia [animal ethic approval no.: USM/Animal Ethics Approval/2008/(41)(131)].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C.H., See Too, W.C., Lim, B.H. et al. Identification and Characterization of Entamoeba histolytica Choline Kinase. Acta Parasit. 69, 426–438 (2024). https://doi.org/10.1007/s11686-023-00763-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-023-00763-1

Keywords

Navigation