Skip to main content
Log in

Morphological and Molecular Characterization of Myxobolus nkondjockei sp. nov. (Myxozoa: Myxobolidae), A Parasite of Labeo batesii Boulenger, 1911 (Teleostei: Cyprinidae) from Makombè River in Cameroon

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Myxozoans are economically important group of metazoan parasites, which can cause diseases in a large variety of commercially important fishes. Increased knowledge on molecular features has shown that traditional descriptive characters may be misleading. Combination of both descriptive and molecular features is therefore necessary for an integrated taxonomic assessment.

Methods

Cyprinid Labeo batesii, sampled in the Makombè River at Nkondjock in Cameroon were examined for myxosporeans. Identification of parasite species was based on morphological and molecular sequence analyses of myxospores. Phylogenetic analysis was performed using maximum likelihood (ML) and Bayesian inference (BI) methods.

Results

The scales of L. batesii were infected by Myxobolus nkondjockei sp. nov Their mature myxospores are ovoid in frontal view and lenticular in lateral view, with two rounded ends. These myxospores measured 10.3 (10–10.9) μm length and 8.0 (7.3–8.5) μm width. Myxospores have two ovoid and equal sizes polar capsules. They measured 4.5 (4.0–5.0) µm in length and 2.4 (2–2.9) µm in width. Polar tubules were coiled in 4–5 turns perpendicular to the longitudinal axis of the polar capsules. Phylogenetic analysis of the 18S rDNA sequence show clustering of M. nkondjockei sp. n. close to an undetermined species Myxobolus sp. reported infecting gill lamellas of Labeo rohita from India.

Conclusion

The morphological, molecular and phylogenetic data provided for M. nkondjockei sp. n. are solid basis for further identification of this myxozoan of which pathogenicity probably plays an economic role at culturing the hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Griffin W, Wang W, de Souza MC (2019) The sustainable development goals and the economic contribution of fisheries and aquaculture. FAO Aquac Newsl 60:51–52

    Google Scholar 

  2. Volff, (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294. https://doi.org/10.1038/sj.hdy.6800635

    Article  CAS  PubMed  Google Scholar 

  3. Wolf K, Markiw ME (1984) Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225:1449–1452. https://doi.org/10.1126/science.225.4669.1449

    Article  CAS  PubMed  Google Scholar 

  4. Fiala I, Bartošová-Sojková P, Whipps CM (2015) Classification and phylogenetics of Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 85–110

    Chapter  Google Scholar 

  5. Eiras JC, Molnár K, Lu YS (2005) Synopsis of the species of Myxobolus Bütschli, 1882 (Myxozoa: Myxosporea: Myxobolidae). Syst Parasitol 61:1–46. https://doi.org/10.1007/s11230-004-6343-9

    Article  CAS  PubMed  Google Scholar 

  6. Eiras JC, Zhang J, Molnár K (2014) Synopsis of the species of Myxobolus Bütschli, 1882 (Myxozoa: Myxosporea, Myxobolidae) described between 2005 and 2013. Syst Parasitol 88:11–36. https://doi.org/10.1007/s11230-014-9484-5

    Article  PubMed  Google Scholar 

  7. Eiras JC, Cruz CF, Saraiva A, Adriano EA (2021) Synopsis of the species of Myxobolus (Cnidaria, Myxozoa, Myxosporea) described between 2014 and 2020. Folia Parasitol. https://doi.org/10.14411/fp.2021.012

    Article  Google Scholar 

  8. Winfield IJ, Nelson JS (2012) Cyprinid fishes: systematics, biology and exploitation. Springer Science and Business Media, Berlin

    Google Scholar 

  9. Reid GM (1985) A revision of African species of Labeo (Pisces: Cyprinidae) and a redefinition of the genus. Verlag von J, Cramer

    Google Scholar 

  10. Weyl OLF, Booth AJ (1999) On the life history of a cyprinid fish, Labeo cylindricus. Environ Biol Fishes 55:215–225. https://doi.org/10.1023/A:1007543319416

    Article  Google Scholar 

  11. Olufeagba SO, Okomoda VT, Okache W (2016) Growth performance of all male tilapia (Oreochromis niloticus) fed commercial and on-farm compounded diet. Banats J Biotechnol 7:70–76. https://doi.org/10.7904/2068-4738-VII(13)-70

    Article  CAS  Google Scholar 

  12. Molnár K (1994) Comments on the host organ and tissue specificity of fish myxosporeans and on the types of their intrapiscine development. Parasitol Hung 27:5–20

    Google Scholar 

  13. Okamura B, Gruhl A, Bartholomew JL (2015) Myxozoan evolution, ecology and development. Springer International Publishing, Switzerland

    Book  Google Scholar 

  14. Stiassny MLG, Teugels GG, Hopkins CD (2007) Freshwater and brackish fish from lower Guinea. Western Central Africa Institute of Research for Development, Paris

    Google Scholar 

  15. Vivien J (2012) Guide des Mammifères et poissons du Cameroun. Nguila Kerou, Saint berthevin

    Google Scholar 

  16. Lom J, Arthur JR (1989) A guideline for the preparation of species descriptions in Myxosporea. J Fish Dis 12:151–156. https://doi.org/10.1111/j.1365-2761.1989.tb00287.x

    Article  Google Scholar 

  17. Lekeufack-Folefack GB, Feudjio-Dongmo B, Fomena A, Tene-Fossog B, Wondji MJ (2020) An optimized protocol for Myxosporidia (Cnidaria: Myxosporea) DNA extraction for molecular studies. Open J Anim Sci 10:378. https://doi.org/10.4236/ojas.2020.103023

    Article  CAS  Google Scholar 

  18. Molnár K, Eszterbauer E, Székely C, Dán Á, Harrach B (2002) Morphological and molecular biological studies on intramuscular Myxobolus spp. of cyprinid fish. J Fish Dis 25:643–652. https://doi.org/10.1046/j.1365-2761.2002.00409.x

    Article  Google Scholar 

  19. Adriano EA, Carriero MM, Maia AAM, Silva MRM, Naldoni J, Ceccarelli PS, Arana S (2012) Phylogenetic and host–parasite relationship analysis of Henneguya multiplasmodialis n. sp. infecting Pseudoplatystoma spp. in Brazilian Pantanal wetland. Vet Parasitol 185:110–120. https://doi.org/10.1016/j.vetpar.2011.10.008

    Article  CAS  PubMed  Google Scholar 

  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp 41:95–98

    CAS  Google Scholar 

  21. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu SMA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–4455. https://doi.org/10.1093/bioinformatics/btz305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/BF01731581

    Article  CAS  PubMed  Google Scholar 

  26. Rambaut A (2016) FigTree v1. 4.3 software Institute of Evolutionary Biology. University of Edinburgh, Edinburgh

    Google Scholar 

  27. Lekeufack-Folefack GB, Abdel-Baki AAS, Onana ANO, Fomena A, Mansour L (2019) Morphological and molecular characterization of Myxobolus dibombensis sp. n. (Myxozoa: Myxobolidae), a parasite of the African carp Labeobarbus batesii (Teleostei: Cyprinidae) from Dibombe River. Cameroon Parasitol Res 118:763–771

    Article  Google Scholar 

  28. Lekeufack-Folefack GB, Tchoutezo-Tiwa AE, Al-Tamimi J, Fomena A, Al-Omar SY, Mansour L (2021) Myxobolus opsaridiumi sp. nov. (Cnidaria: Myxosporea) infecting different tissues of an ornamental fish, Opsaridium ubangiensis (Pellegrin, 1901), in Cameroon: morphological and molecular characterization. Eur J Taxon 733:56–71

    Article  Google Scholar 

  29. Bertin L (1958) Ecailles et sclérifications dermiques. In: Grasse P-P (ed) Traité de zoologie. Masson, Paris, pp 482–504

    Google Scholar 

  30. Whitear M (1970) The skin surface of bony fishes. J Zoology 160:437–454

    Article  Google Scholar 

  31. Egusa S, Maeno Y, Sorimachi M (1990) A new species of Myxozoa, Myxobolus episquamalis sp. nov. infecting the scales of the mullet. Mugil cephalus L Fish pathology 25:87–91. https://doi.org/10.3147/jsfp.25.87

    Article  Google Scholar 

  32. Moshu A, Molnár K (1997) Thelohanellus (Myxozoa: Myxosporea) infection of the scales in the European wild carp Cyprinus carpio carpio. Dis Aquat Organ 28(2):115–123. https://doi.org/10.3354/dao028115

    Article  Google Scholar 

  33. Iversen ES (1954) A new myxosporidian, Myxosoma squamalis, parasite of some salmonid fishes. J Parasitol 40:397–404. https://doi.org/10.2307/3273884

    Article  CAS  PubMed  Google Scholar 

  34. Wainwright DK, Lauder GV (2017) Mucus matters: The slippery and complex surfaces of fish. Funct Surf Biol III:223–246. https://doi.org/10.1007/978-3-319-74144-4_10

    Article  Google Scholar 

  35. Sitja-Bobadilla A, Schmidt-Posthaus H, Wahli T, Holland JW, Secombes CJ (2015) Fish Immune Responses to Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan evolution, ecology and development. Springer International Publishing, Cham, pp 253–280. https://doi.org/10.1007/978-3-319-14753-6_14

    Chapter  Google Scholar 

  36. Rothwell JT, Virgona JL, Callinan RB, Nicholls PJ, Langdon JS (1997) Occurrence of cutaneous infections of Myxobolus episquamalis (Myxozoa: Myxobolidae) in sea mullet, Mugil cephalus L. in Australia. Aust Vet J 75:349–352. https://doi.org/10.1111/j.1751-0813.1997.tb15709.x

    Article  CAS  PubMed  Google Scholar 

  37. Deli A, Lekeufack Folefack GB, Fomena A (2017) Description of Myxidium tetraodoni sp. nov. Myxidium anisocapsularis sp. nov. and Myxobolus magai sp. nov. (Myxosporea: Bivalvulida) infecting some freshwater fishes in Cameroon (central Africa). Fish Aqua J 8:235. https://doi.org/10.4172/2150-3508.1000235

    Article  Google Scholar 

  38. Kaur H, Singh R (2011) Two new species of Myxobolus (Myxozoa: Myxosporea: Bivalvulida) infecting an Indian major carp in Ropar and Kanjali wetlands (Punjab). J Parasitic Dis 35:23–32. https://doi.org/10.1007/s12639-011-0061-4

    Article  Google Scholar 

  39. Haldar DP, Das MK, Sharma BK (1983) Studies on protozoan parasites from fishes : four new species of the genera Henneguya Thelohan, 1892, Thelohanellus Kudo, 1933 and Myxobolus Butschli, 1892. Arch Protistenkd 127:283–296. https://doi.org/10.1016/S0003-9365(83)80023-2

    Article  Google Scholar 

  40. Landsberg JH, Lom J (1991) Taxonomy of the genera of the Myxobolus/Myxosoma group (Myxobolidae: Myxosporea), current listing of species and revision of synonyms. Syst Parasitol 18:165–186. https://doi.org/10.1007/BF00009358

    Article  Google Scholar 

  41. Li P, Xi BW, Zhao X, Xie J (2017) Myxobolus linzhiensis n. sp. (Myxozoa: Myxobolidae) from the gill filament of Schizothorax oconnori Lloyd (Cyprinidae: Schizothoracinae) in Tibet, China: morphological and molecular characterization. Parasitol Res 116:3097–3103. https://doi.org/10.1007/s00436-017-5621-9

    Article  PubMed  Google Scholar 

  42. Zhang JY, Wang JG, Li AH, Gong XN (2010) Infection of Myxobolus turpisrotundus sp. n. in allogynogenetic gibel carp, Carassius auratus gibelio (Bloch), with revision of Myxobolus rotundus (s. l.) Nemeczek reported from C. auratus auratus (L.). J Fish Dis 33:625–638. https://doi.org/10.1111/j.1365-2761.2010.01161.x

    Article  CAS  PubMed  Google Scholar 

  43. Liu XH, Hua CJ, Zhang QQ, Zhao YL, Zhang D, Zhang JY (2017) Myxobolus taibaiensis sp. n. (Myxozoa: Myxosporea) infecting the intestial wall of common carp Cyprinus carpio Linnaeus in China. Folia Parasitol 64:1–7. https://doi.org/10.14411/fp.2017.001

    Article  Google Scholar 

  44. Chen QL, Ma CL (1998) Fauna Sinica, Myxozoa: Myxosporea. Science Press, Beijing

    Google Scholar 

  45. Li P, Xi BW, Chen K, Xie J (2017) Morphological and molecular characteristic of Myxobolus yueyangensis sp. nov. (Myxozoa: Myxobolidae) from the intestine of common carp (Cyprinus carpio) in China. Acta Hydrobiol Sin 41:1251–1256

    Google Scholar 

  46. Liu XH, Batueva MD, Zhao YL, Zhang JY, Zhang QQ, Li TT, Li AH (2016) Morphological and molecular characterisation of Myxobolus pronini n. sp. (Myxozoa: Myxobolidae) from the abdominal cavity and visceral serous membranes of the gibel carp Carassius auratus gibelio (Bloch) in Russia and China. Parasites Vectors. 9:562. https://doi.org/10.1186/s13071-016-1836-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Supporting Project (RSP- 2021/75), King Saud University (Riyadh, Saudi Arabia). Part of this work was supported by budget funding of RAS (project 121030100028-0“Regularities of formation and anthropogenic transformation of biodiversity and biological resources of the Azov-Black Sea basin and other areas of the World Ocean” (Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamjed Mansour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekeufack-Folefack, G.B., Feudjio-Dongmo, B., Tene-Fossog, B. et al. Morphological and Molecular Characterization of Myxobolus nkondjockei sp. nov. (Myxozoa: Myxobolidae), A Parasite of Labeo batesii Boulenger, 1911 (Teleostei: Cyprinidae) from Makombè River in Cameroon. Acta Parasit. 67, 1573–1583 (2022). https://doi.org/10.1007/s11686-022-00609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00609-2

Keywords

Navigation