Skip to main content

Advertisement

Log in

IgG Subclass Analysis in Patients with Chagas Disease 4 Years After Benznidazole Treatment

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Background

In humans, Trypanosoma cruzi infection is controlled by a complex immune response. Immunoglobulin G (IgG) is important for opsonizing blood trypomastigotes, activating the classic complement pathway, and reducing parasitemia. The trypanocidal activity of benznidazole is recognized, but its effects on the prevention and progression of Chagas disease is not well understood

Objective

We aimed to evaluate the levels of total IgG and cross-specific IgG subclasses in patients with chronic Chagas disease of different clinical forms before and after 4 years of benznidazole treatment.

Methods

Eight individuals with the indeterminate form and nine with the cardiac form who completed the treatment protocol were evaluated. The levels of total IgG and IgG1, IgG2, IgG3, and IgG4 isotypes were quantified in the serum of each individual using the fluorescent immunosorbent assay. The results are expressed as relative fluorescence unit.

Results

Patients with chronic Chagas disease presented decreased levels of total IgG at 48 months after benznidazole treatment. Increased IgG1 and decreased IgG3 levels were observed in patients with the cardiac form and those with exacerbated clinical forms. In addition, a decrease in the IgG3/IgG1 ratio was observed in individuals with the cardiac form of Chagas disease.

Conclusions

Benznidazole administration in the chronic phase differentially changes IgG subclasses in patients with cardiac and indeterminate forms, and monitoring the IgG3 level may indicate the possible prognosis to the cardiac form or worsening of the already established clinical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lidani KCF, Andrade FA, Bavia L et al (2019) Chagas disease: from discovery to a worldwide health problem. Front Public Health 7:166. https://doi.org/10.3389/fpubh.2019.00166

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perez-Molina JA, Molina I (2018) Chagas disease. Lancet 391(10115):82–94. https://doi.org/10.1016/S0140-6736(17)31612-4

    Article  PubMed  Google Scholar 

  3. Yoshida N (2007) Trypanosoma cruzi infection by oral route: how the interplay between parasite and host components modulates infectivity. Parasitol Int 57(2):105–109. https://doi.org/10.1016/j.parint.2007.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Zafra G, Florez O, Morillo CA, Echeverria LE, Martin J, Gonzalez CI (2008) Polymorphisms of toll-like receptor 2 and 4 genes in Chagas disease. Mem Inst Oswaldo Cruz 103(1):27–30. https://doi.org/10.1590/s0074-02762008000100004

    Article  PubMed  Google Scholar 

  5. Cardoso MS, Reis-Cunha JL, Bartholomeu DC (2015) Evasion of the immune response by trypanosoma cruzi during acute infection. Front Immunol 6:659. https://doi.org/10.3389/fimmu.2015.00659

    Article  CAS  PubMed  Google Scholar 

  6. Bern C, Montgomery SP, Herwaldt BL et al (2007) Evaluation and treatment of chagas disease in the United States: a systematic review. JAMA 298(18):2171–2181. https://doi.org/10.1001/jama.298.18.2171

    Article  CAS  PubMed  Google Scholar 

  7. Machado JR, Silva MV, Borges DC et al (2014) Immunopathological aspects of experimental Trypanosoma cruzi reinfections. Biomed Res Int. https://doi.org/10.1155/2014/648715

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ribeiro BM, Crema E, Rodrigues V Jr (2008) Analysis of the cellular immune response in patients with the digestive and indeterminate forms of Chagas’ disease. Hum Immunol 69(8):484–489. https://doi.org/10.1016/j.humimm.2008.05.013

    Article  CAS  PubMed  Google Scholar 

  9. Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375(9723):1388–1402. https://doi.org/10.1016/S0140-6736(10)60061-X

    Article  PubMed  Google Scholar 

  10. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simoes MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115(9):1109–1123. https://doi.org/10.1161/CIRCULATIONAHA.106.624296

    Article  PubMed  Google Scholar 

  11. Marin-Neto JA, Almeida Filho OC, Pazin-Filho A, Maciel BC (2002) Indeterminate form of Chagas’ disease. Proposal of new diagnostic criteria and perspectives for early treatment of cardiomyopathy. Arq Bras Cardiol 79(6):623–627. https://doi.org/10.1590/s0066-782x2002001500008

    Article  PubMed  Google Scholar 

  12. Bern C (2015) Chagas’ disease. N Engl J Med 373(5):456–466. https://doi.org/10.1056/NEJMra1410150

    Article  CAS  PubMed  Google Scholar 

  13. Umekita LF, Mota I (2000) How are antibodies involved in the protective mechanism of susceptible mice infected with T. cruzi? Braz J Med Biol Res 33(3):253–258

    Article  CAS  Google Scholar 

  14. Martin D, Tarleton R (2004) Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunol Rev 201:304–317. https://doi.org/10.1111/j.0105-2896.2004.00183.x

    Article  CAS  PubMed  Google Scholar 

  15. Lidani KCF, Bavia L, Ambrosio AR, de Messias-Reason IJ (2017) The complement system: a prey of trypanosoma cruzi. Front Microbiol 8:607. https://doi.org/10.3389/fmicb.2017.00607

    Article  PubMed  PubMed Central  Google Scholar 

  16. Acevedo GR, Girard MC, Gomez KA (2018) The unsolved jigsaw puzzle of the immune response in chagas disease. Front Immunol 9:1929. https://doi.org/10.3389/fimmu.2018.01929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ricklin D, Reis ES, Lambris JD (2016) Complement in disease: a defence system turning offensive. Nat Rev Nephrol 12(7):383–401. https://doi.org/10.1038/nrneph.2016.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Georg I, Hasslocher-Moreno AM, Xavier SS, Holanda MT, Roma EH, Bonecini-Almeida MDG (2017) Evolution of anti-Trypanosoma cruzi antibody production in patients with chronic Chagas disease: correlation between antibody titers and development of cardiac disease severity. PLoS Negl Trop Dis 11(7):e0005796. https://doi.org/10.1371/journal.pntd.0005796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garred P, Michaelsen TE, Aase A (1989) The IgG subclass pattern of complement activation depends on epitope density and antibody and complement concentration. Scand J Immunol 30(3):379–382. https://doi.org/10.1111/j.1365-3083.1989.tb01225.x

    Article  CAS  PubMed  Google Scholar 

  20. Michaelsen TE, Garred P, Aase A (1991) Human IgG subclass pattern of inducing complement-mediated cytolysis depends on antigen concentration and to a lesser extent on epitope patchiness, antibody affinity and complement concentration. Eur J Immunol 21(1):11–16. https://doi.org/10.1002/eji.1830210103

    Article  CAS  PubMed  Google Scholar 

  21. Bindon CI, Hale G, Brüggemann M, Waldmann H (1988) Human monoclonal IgG isotypes differ in complement activating function at the level of C4 as well as C1q. J Exp Med 168(1):127–142

    Article  CAS  Google Scholar 

  22. Lima-Martins MV, Sanchez GA, Krettli AU, Brener Z (1985) Antibody-dependent cell cytotoxicity against Trypanosoma cruzi is only mediated by protective antibodies. Parasite Immunol 7(4):367–376

    Article  CAS  Google Scholar 

  23. Pyrrho AS, Moraes JL, Pecanha LM, Gattass CR (1998) Trypanosoma cruzi: IgG1 and IgG2b are the main immunoglobulins produced by vaccinated mice. Parasitol Res 84(4):333–337. https://doi.org/10.1007/s004360050406

    Article  CAS  PubMed  Google Scholar 

  24. Brodskyn CI, Silva AM, Takehara HA, Mota I (1989) IgG subclasses responsible for immune clearance in mice infected with Trypanosoma cruzi. Immunol Cell Biol 67(Pt 6):343–348. https://doi.org/10.1038/icb.1989.50

    Article  PubMed  Google Scholar 

  25. Sathler-Avelar R, Vitelli-Avelar DM, Massara RL et al (2008) Etiological treatment during early chronic indeterminate Chagas disease incites an activated status on innate and adaptive immunity associated with a type 1-modulated cytokine pattern. Microbes Infect 10(2):103–113. https://doi.org/10.1016/j.micinf.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  26. Moens L, Tangye SG (2014) Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol 5:65. https://doi.org/10.3389/fimmu.2014.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chatelain E (2016) Chagas disease research and development: Is there light at the end of the tunnel? Comput Struct Biotechnol J 15:98–103. https://doi.org/10.1016/j.csbj.2016.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morillo CA, Marin-Neto JA, Avezum A et al (2015) Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373(14):1295–1306. https://doi.org/10.1056/NEJMoa1507574

    Article  CAS  PubMed  Google Scholar 

  29. Dias JC, Ramos AN Jr, Gontijo ED et al (2015) (2016) Brazilian consensus on chagas disease. Rev Soc Bras Med Trop 49(1):3–60. https://doi.org/10.1590/0037-8682-0505-2016

    Article  Google Scholar 

  30. Camargo ME (1966) Fluorescent antibody test for the serodiagnosis of American trypanosomiasis Technical modification employing preserved culture forms of Trypanosoma cruzi in a slide test. Rev Inst Med Trop Sao Paulo 8(5):227–235

    CAS  PubMed  Google Scholar 

  31. Camargo ME, Hoshino S, Siqueira GR (1973) Hemagglutination with preserved, sensitized cells, a practical test for routine serologic diagnosis of American trypanosomiasis. Rev Inst Med Trop Sao Paulo 15(2):81–85

    CAS  PubMed  Google Scholar 

  32. Voller A, Draper C, Bidwell DE, Bartlett A (1975) Microplate enzyme-linked immunosorbent assay for chagas’ disease. Lancet 1(7904):426–428. https://doi.org/10.1016/s0140-6736(75)91492-0

    Article  CAS  PubMed  Google Scholar 

  33. Camargo EP (1964) Growth and differentiation in trypanosoma cruzi. I. origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100

    CAS  PubMed  Google Scholar 

  34. Chiari E, Dias JC, Lana M, Chiari CA (1989) Hemocultures for the parasitological diagnosis of human chronic Chagas’ disease. Rev Soc Bras Med Trop 22(1):19–23. https://doi.org/10.1590/s0037-86821989000100004

    Article  CAS  PubMed  Google Scholar 

  35. Gomes ML, Macedo AM, Vago AR, Pena SD, Galvao LM, Chiari E (1998) Trypanosoma cruzi: optimization of polymerase chain reaction for detection in human blood. Exp Parasitol 88(1):28–33. https://doi.org/10.1006/expr.1998.4191

    Article  CAS  PubMed  Google Scholar 

  36. Degrave W, Fragoso SP, Britto C et al (1988) Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi. Mol Biochem Parasitol 27(1):63–70. https://doi.org/10.1016/0166-6851(88)90025-4

    Article  CAS  PubMed  Google Scholar 

  37. Rosenfeld LG, Malta DC, Szwarcwald CL et al (2019) Reference values for blood count laboratory tests in the Brazilian adult population. National Health Survey Rev Bras Epidemiol 22(Suppl 02):E190003. https://doi.org/10.1590/1980-549720190003

    Article  Google Scholar 

  38. American Diabetes A (2020) Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care 43(1):S14–S31. https://doi.org/10.2337/dc20-S002

    Article  Google Scholar 

  39. Faludi AA, Izar MCO, Saraiva JFK et al (2017) Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose – 2017. Arq Bras Cardiol 109(2 suppl 1):1–76. https://doi.org/10.5935/abc.20170121

    Article  PubMed  Google Scholar 

  40. Barroso WKS, Rodrigues CIS, Bortolotto LA et al (2021) Brazilian Guidelines of Hypertension – 2020. Arq Bras Cardiol 116(3):516–658. https://doi.org/10.36660/abc.20201238

    Article  PubMed  Google Scholar 

  41. Sgarbi JA, Teixeira PFS, Maciel LMZ et al (2013) The Brazilian consensus for the clinical approach and treatment of subclinical hypothyroidism in adults: recommendations of the thyroid department of the Brazilian society of endocrinology and metabolism. Arq Bras Endocrinol Metab 57(3):166–183. https://doi.org/10.1590/S0004-27302013000300003

    Article  Google Scholar 

  42. Carvalho GA, Perez CL, Ward LS (2013) The clinical use of thyroid function tests. Arq Bras Endocrinol Metabol 57(3):193–204. https://doi.org/10.1590/s0004-27302013000300005

    Article  PubMed  Google Scholar 

  43. Jonklaas J, Bianco AC, Bauer AJ et al (2014) Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid 24(12):1670–1751. https://doi.org/10.1089/thy.2014.0028

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ross DS, Burch HB, Cooper DS et al (2016) 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26(10):1343–1421. https://doi.org/10.1089/thy.2016.0229

    Article  PubMed  Google Scholar 

  45. KDIGO (2013) Chapter 1 Definition and classification of CKD. Kidney Int Suppl 3(1):19–62. https://doi.org/10.1038/kisup.2012.64

  46. Lala V, Goyal A, Bansal P, Minter DA (2021) Liver Function Tests. In: StatPearls. Treasure Island (FL)

  47. Takehara HA, Perini A, da Silva MH, Mota I (1981) Trypanosoma cruzi: role of different antibody classes in protection against infection in the mouse. Exp Parasitol 52(1):137–146. https://doi.org/10.1016/0014-4894(81)90069-2

    Article  CAS  PubMed  Google Scholar 

  48. Stefani MM, Takehara HA, Mota I (1983) Isotype of antibodies responsible for immune lysis in Trypanosoma cruzi infected mice. Immunol Lett 7(2):91–97. https://doi.org/10.1016/0165-2478(83)90040-8

    Article  CAS  PubMed  Google Scholar 

  49. Jeng GK, Kierszenbaum F (1984) Alterations in production of immunoglobulin classes and subclasses during experimental Trypanosoma cruzi infection. Infect Immun 43(2):768–770

    Article  CAS  Google Scholar 

  50. Brodskyn CI, da Silva AM, Takehara HA, Mota I (1988) Characterization of antibody isotype responsible for immune clearance in mice infected with Trypanosoma cruzi. Immunol Lett 18(4):255–258. https://doi.org/10.1016/0165-2478(88)90171-x

    Article  CAS  PubMed  Google Scholar 

  51. Spinella S, Liegeard P, Hontebeyrie-Joskowicz M (1992) Trypanosoma cruzi: predominance of IgG2a in nonspecific humoral response during experimental Chagas’ disease. Exp Parasitol 74(1):46–56. https://doi.org/10.1016/0014-4894(92)90138-z

    Article  CAS  PubMed  Google Scholar 

  52. dos Santos DM, Talvani A, Guedes PM, Machado-Coelho GL, de Lana M, Bahia MT (2009) Trypanosoma cruzi: Genetic diversity influences the profile of immunoglobulins during experimental infection. Exp Parasitol 121(1):8–14. https://doi.org/10.1016/j.exppara.2008.09.012

    Article  CAS  PubMed  Google Scholar 

  53. Junqueira C, Caetano B, Bartholomeu DC et al (2010) The endless race between Trypanosoma cruzi and host immunity: lessons for and beyond Chagas disease. Expert Rev Mol Med 12:e29. https://doi.org/10.1017/S1462399410001560

    Article  CAS  PubMed  Google Scholar 

  54. Lelchuk R, Dalmasso AP, Inglesini CL, Alvarez M, Cerisola JA (1970) Immunoglobulin studies in serum of patients with American trypanosomiasis (Chagas’ disease). Clin Exp Immunol 6(4):547–555

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Scott MT, Goss-Sampson M (1984) Restricted IgG isotype profiles in T cruzi infected mice and Chagas’ disease patients. Clin Exp Immunol 58(2):372–379

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cordeiro FD, Martins-Filho OA, Da Costa Rocha MO, Adad SJ, Corrêa-Oliveira R, Romanha AJ (2001) Anti-Trypanosoma cruzi immunoglobulin G1 can be a useful tool for diagnosis and prognosis of human Chagas’ disease. Clin Diagn Lab Immunol 8(1):112–118

    Article  CAS  Google Scholar 

  57. Dutra WO, Menezes CA, Magalhaes LM, Gollob KJ (2014) Immunoregulatory networks in human Chagas disease. Parasite Immunol 36(8):377–387. https://doi.org/10.1111/pim.12107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. d’Imperio Lima MR, Eisen H, Minoprio P, Joskowicz M, Coutinho A (1986) Persistence of polyclonal B cell activation with undetectable parasitemia in late stages of experimental Chagas’ disease. J Immunol 137(1):353–356

    CAS  PubMed  Google Scholar 

  59. Caldas IS, Diniz LF, Guedes PMDM et al (2017) Myocarditis in different experimental models infected by Trypanosoma cruzi is correlated with the production of IgG1 isotype. Acta Trop 167:40–49. https://doi.org/10.1016/j.actatropica.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  60. Alcantara A, Brener Z (1978) The in vitro interaction of Trypanosoma cruzi bloodstream forms and mouse peritoneal macrophages. Acta Trop 35(3):209–219

    CAS  PubMed  Google Scholar 

  61. Tambourgi DV, Kipnis TL, Dias da Silva W (1989) Trypanosoma cruzi: antibody-dependent killing of bloodstream trypomastigotes by mouse bone marrow-derived mast cells and by mastocytoma cells. Exp Parasitol 68(2):192–201. https://doi.org/10.1016/0014-4894(89)90097-0

    Article  CAS  PubMed  Google Scholar 

  62. Rowland EC, Lozykowski MG, McCormick TS (1992) Differential cardiac histopathology in inbred mouse strains chronically infected with Trypanosoma cruzi. J Parasitol 78(6):1059–1066

    Article  CAS  Google Scholar 

  63. Bergstedt-Lindqvist S, Moon HB, Persson U, Moller G, Heusser C, Severinson E (1988) Interleukin 4 instructs uncommitted B lymphocytes to switch to IgG1 and IgE. Eur J Immunol 18(7):1073–1077. https://doi.org/10.1002/eji.1830180716

    Article  CAS  PubMed  Google Scholar 

  64. Stevens TL, Bossie A, Sanders VM et al (1988) Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334(6179):255–258. https://doi.org/10.1038/334255a0

    Article  CAS  PubMed  Google Scholar 

  65. McIntyre TM, Klinman DR, Rothman P et al (1993) Transforming growth factor beta 1 selectivity stimulates immunoglobulin G2b secretion by lipopolysaccharide-activated murine B cells. J Exp Med 177(4):1031–1037. https://doi.org/10.1084/jem.177.4.1031

    Article  CAS  PubMed  Google Scholar 

  66. Brière F, Bridon JM, Servet C, Rousset F, Zurawski G, Banchereau J (1993) IL-10 and IL-13 as B cell growth and differentiation factors. Nouv Rev Fr Hematol 35(3):233–235

    PubMed  Google Scholar 

  67. Briere F, Servet-Delprat C, Bridon JM, Saint-Remy JM, Banchereau J (1994) Human interleukin 10 induces naive surface immunoglobulin D+ (sIgD+) B cells to secrete IgG1 and IgG3. J Exp Med 179(2):757–762. https://doi.org/10.1084/jem.179.2.757

    Article  CAS  PubMed  Google Scholar 

  68. Stavnezer J (1996) Immunoglobulin class switching. Curr Opin Immunol 8(2):199–205

    Article  CAS  Google Scholar 

  69. Pène J, Gauchat JF, Lécart S et al (2004) Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol 172(9):5154–5157

    Article  Google Scholar 

  70. Boumendjel A, Tawk L, Malefijt Rde W, Boulay V, Yssel H, Pene J (2006) IL-27 induces the production of IgG1 by human B cells. Eur Cytokine Netw 17(4):281–289

    CAS  PubMed  Google Scholar 

  71. Avery DT, Bryant VL, Ma CS, de Waal MR, Tangye SG (2008) IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. J Immunol 181(3):1767–1779

    Article  CAS  Google Scholar 

  72. Nakagawa T, Hirano T, Nakagawa N, Yoshizaki K, Kishimoto T (1985) Effect of recombinant IL 2 and gamma-IFN on proliferation and differentiation of human B cells. J Immunol 134(2):959–966

    CAS  PubMed  Google Scholar 

  73. French MA, Abudulai LN, Fernandez S (2013) Isotype diversification of IgG antibodies to HIV Gag Proteins as a therapeutic vaccination strategy for HIV infection. Vaccines (Basel) 1(3):328–342. https://doi.org/10.3390/vaccines1030328

    Article  Google Scholar 

  74. Cerban FM, Gea S, Menso E, Vottero-Cima E (1993) Chagas’ disease: IgG isotypes against Trypanosoma cruzi cytosol acidic antigens in patients with different degrees of heart damage. Clin Immunol Immunopathol 67(1):25–30. https://doi.org/10.1006/clin.1993.1041

    Article  CAS  PubMed  Google Scholar 

  75. Machado-de-Assis GF, Diniz GA, Montoya RA et al (2013) A serological, parasitological and clinical evaluation of untreated Chagas disease patients and those treated with benznidazole before and thirteen years after intervention. Mem Inst Oswaldo Cruz 108(7):873–880. https://doi.org/10.1590/0074-0276130122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sosa Estani S, Segura EL, Ruiz AM, Velazquez E, Porcel BM, Yampotis C (1998) Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am J Trop Med Hyg 59(4):526–529. https://doi.org/10.4269/ajtmh.1998.59.526

    Article  CAS  PubMed  Google Scholar 

  77. Pinto AY, Valente Vda C, Coura JR et al (2013) Clinical follow-up of responses to treatment with benznidazol in Amazon: a cohort study of acute Chagas disease. PLoS ONE 8(5):e64450. https://doi.org/10.1371/journal.pone.0064450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hernandez-Becerril N, Nava A, Reyes PA, Monteon VM (2001) IgG subclass reactivity to Trypanosoma cruzi in chronic chagasic patients. Arch Cardiol Mex 71(3):199–205

    CAS  PubMed  Google Scholar 

  79. Guedes PM, Veloso VM, Gollob KJ et al (2008) IgG isotype profile is correlated with cardiomegaly in Beagle dogs infected with distinct Trypanosoma cruzi strains. Vet Immunol Immunopathol 124(1–2):163–168. https://doi.org/10.1016/j.vetimm.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  80. Morgan J, Dias JC, Gontijo ED et al (1996) Anti-Trypanosoma cruzi antibody isotype profiles in patients with different clinical manifestations of Chagas’ disease. Am J Trop Med Hyg 55(4):355–359. https://doi.org/10.4269/ajtmh.1996.55.355

    Article  CAS  PubMed  Google Scholar 

  81. Vercosa AF, Lorena VM, Carvalho CL et al (2007) Chagas’ disease: IgG isotypes against cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens of Trypanosoma cruzi in chronic Chagasic patients. J Clin Lab Anal 21(5):271–276. https://doi.org/10.1002/jcla.20186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Solana ME, Katzin AM, Umezawa ES, Miatello CS (1995) High specificity of Trypanosoma cruzi epimastigote ribonucleoprotein as antigen in serodiagnosis of Chagas’ disease. J Clin Microbiol 33(6):1456–1460

    Article  CAS  Google Scholar 

  83. D’Ávila DA, Guedes PMM, Castro AM, Gontijo ED, Chiari E, Galvão LMC (2009) Immunological imbalance between IFN-γ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease. Mem Inst Oswaldo Cruz 104(1):100–105. https://doi.org/10.1590/S0074-02762009000100015

    Article  PubMed  Google Scholar 

  84. Pissetti CW, Correia D, Braga T et al (2009) Association between the plasma levels of TNF-alpha, IFN-gamma, IL-10, nitric oxide and specific IgG isotypes in the clinical forms of chronic Chagas disease. Rev Soc Bras Med Trop 42(4):425–430

    Article  Google Scholar 

Download references

Funding

This work was funded by CNPq, FAPEMIG, CAPES, FUNEPU, NIDR, and CEFORES. The funders had no role in the study design, data collection, and analysis, the decision to publish, or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data curation and investigation: ML, MVdaS, LRB, DAAdaS, RCdS; methodology and formal analysis: ML, MVdS, LAP Rde R and JRM; visualization, writing (original draft preparation): FRH, ML and Marcos Vinícius da Silva; writing (review and editing): FRH, MVdaS, DC and VR Jr.; supervision: EL-S, CJFO, DBR R, DC and VRJr.; conceptualization, funding acquisition and project administration: DC and VR Jr. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marcos Vinícius da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil (Protocol No. 1030).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llaguno, M., da Silva, M.V., Helmo, F.R. et al. IgG Subclass Analysis in Patients with Chagas Disease 4 Years After Benznidazole Treatment. Acta Parasit. 66, 1499–1509 (2021). https://doi.org/10.1007/s11686-021-00430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-021-00430-3

Keywords

Navigation