Skip to main content

Advertisement

Log in

A 5-Year Prospective Study on Incidence and Clinico-pathological Changes Associated with Naturally Occurring Trypanosomosis in Dogs of Mizoram, India

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

The present research was taken to study the hospital-based incidence and clinico-pathological changes associated with naturally occurring trypanosomosis in dogs of Mizoram.

Methods

A 5-year prospective study on hospital-based incidence and clinico-pathological changes associated with naturally occurring trypanosomosis in dogs of Mizoram was carried out during the study period from April, 2015 to March, 2020. Trypanosoma evansi infection was confirmed by microscopic examination and polymerase chain reaction (PCR). Non-infected clinically healthy dogs (n = 6) served as control. Blood samples were collected to study the haemogram and serum samples were used for the evaluation of serum biochemical parameters and oxidant-antioxidant parameters.

Results

During the study period, an overall incidence of 0.25% was recorded for trypanosomosis in dogs. The most consistent clinical findings noticed were anorexia/inappetence, pyrexia, depression/lethargy, pale mucous membrane, dehydration and lymphadenomegaly. Anaemia, granulocytopenia, lymphocytosis and thrombocytopenia were the major findings noticed in trypanosomosis affected dogs. The profile of vital organ function revealed that the mean values of total protein, albumin and random blood glucose were significantly (P < 0.05) lower, whereas the mean values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin, blood urea nitrogen (BUN) and creatinine were significantly (P < 0.05) higher in dogs affected with trypanosomosis. The mean value of lipid hydroperoxide (LPO) was significantly (P < 0.05) higher, whereas the mean values of glutathione (GSH), superoxide dismutase (SOD) and total antioxidant activity (TAOA) were significantly (P < 0.05) lower in trypanosomosis affected dogs. When total erythrocyte count (TEC) was correlated with LPO (r = − 0.631, P < 0.05), a negative correlation was found, while in case of GSH (r = 0.757, P < 0.05), SOD (r = 0.767, P < 0.05) and TAOA (r = 0.713, P < 0.05), it was positively correlated.

Conclusion

A negative correlation of TEC count with LPO, while a positive correlation with GSH, SOD and TAOA signify the role of oxidative stress in the pathogenesis of anaemia induced by T. evansi infection in dogs. The present study findings might be helpful to clinicians when treating clinical cases of this kind. Incorporation of organ protective drugs and antioxidants in the treatment schedule may result in better prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ALP:

Alkaline phosphatase

BUN:

Blood urea nitrogen

CAT:

Catalase

GPx:

Glutathione peroxidase

GR:

Glutathine reductase

GSH:

Glutathione

LPO:

Lipid hydroperoxide

SOD:

Superoxide dismutase

TAOA:

Total antioxidant activity

References

  1. Sumbria D, Singla LD, Sharma A, Moudgil AD, Bal MS (2014) Equine trypanosomosis in central and western Punjab: prevalence, haemato-biochemical response and associated risk factors. Acta Trop 138:44–50. https://doi.org/10.1016/j.actatropica.2014.06.003

    Article  PubMed  Google Scholar 

  2. Parashar R, Singla LD, Gupta M, Sharma SK (2018) Evaluation and correlation of oxidative stress and haemato-biochemical observations in horses with natural patent and latent trypanosomosis in Punjab state of India. Acta Parasitol 63(4):733–743. https://doi.org/10.1515/ap-2018-0087

    Article  CAS  PubMed  Google Scholar 

  3. Rjeibi MR, Hamida TB, Dalgatova Z, Mahjoub T, Rejeb A, Dridi W, Gharbi M (2015) First report of surra (Trypanosoma evansi infection) in a Tunisian dog. Parasite. https://doi.org/10.1051/parasite/2015004

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mulandane FC, Snyman LP, Brito DR, Bouyer J, Fafetine J, Van Den Abbeele J, Oosthuizen M, Delespaux V, Neves L (2020) Evaluation of the relative roles of the Tabanidae and Glossinidae in the transmission of trypanosomosis in drug resistance hotspots in Mozambique. Parasit Vectors 13:1–16. https://doi.org/10.1186/s13071-020-04087-1

    Article  CAS  Google Scholar 

  5. Desquesnes M, Dargantes A, Lai DH, Lun ZR, Holzmuller P, Jittapalapong S (2013) Trypanosoma evansi and surra: a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. BioMed Res Int. https://doi.org/10.1155/2013/321237

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ramírez-Iglesias JR, Eleizalde MC, Reyna-Bello A, Mendoza M (2017) Molecular diagnosis of cattle trypanosomes in Venezuela: evidences of Trypanosoma evansi and Trypanosoma vivax infections. J Parasit Dis 41(2):450–458. https://doi.org/10.1007/s12639-016-0826-x

    Article  PubMed  Google Scholar 

  7. Götsch S, Leschnik M, Duscher G, Burgstaller JP, Wille-Piazzai W, Joachim A (2009) Ticks and haemoparasites of dogs from Praia, Cape Verde. Vet Parasitol 166(1–2):171–174. https://doi.org/10.1016/j.vetpar.2009.08.009

    Article  PubMed  Google Scholar 

  8. Abdullah INCI, Yazar S, Tuncbilek AS, Canhilal R, Doganay M, Aydin L, Aktas M, Vatansever Z, Ozdarendeli A, Ozbel Y, Yildirim A (2013) Vectors and vector-borne diseases in Turkey. Ankara Üniv Vet Fak Derg 60(4):281–296. https://doi.org/10.1501/vetfak_0000002593

    Article  Google Scholar 

  9. Pamplona R, Costantini D (2011) Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 301(4):R843–R863. https://doi.org/10.1152/ajpregu.00034.2011

    Article  CAS  PubMed  Google Scholar 

  10. Hou X, Zhang J, Ahmad H, Zhang H, Xu Z, Wang T (2014) Evaluation of antioxidant activities of ampelopsin and its protective effect in lipopolysaccharide-induced oxidative stress piglets. PLoS ONE 9(9):e108314. https://doi.org/10.1371/journal.pone.0108314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chethan GE, Garkhal J, De UK (2016) Disturbance of thyroid function in canine ehrlichiosis and babesiosis associated with oxidative stress. Comp Clin Path 25(5):987–992. https://doi.org/10.1007/s00580-016-2291-4

    Article  CAS  Google Scholar 

  12. Gaykwad C, Garkhal J, Chethan GE, Nandi S, De UK (2018) Amelioration of oxidative stress using N-acetylcysteine in canine parvoviral enteritis. J Vet Pharmacol Ther 41(1):68–75. https://doi.org/10.1111/jvp.12434

    Article  CAS  PubMed  Google Scholar 

  13. Jain NC (1986) Schalm’s veterinary hematology, 4th edn. Lea & Febiger

    Google Scholar 

  14. Doumas BT (1975) Standards for total serum protein assays—a collaborative study. Clin Chem 21(8):1159–1166. https://doi.org/10.1093/clinchem/21.8.1159

    Article  CAS  PubMed  Google Scholar 

  15. Doumas BT, Watson WA, Biggs HG (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin Chim Acta 31(1):87–96. https://doi.org/10.1016/0009-8981(71)90365-2

    Article  CAS  PubMed  Google Scholar 

  16. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63. https://doi.org/10.1093/ajcp/28.1.56

    Article  CAS  PubMed  Google Scholar 

  17. Kind PR, King EJ (1954) Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J Clin Pathol 7(4):322. https://doi.org/10.1136/jcp.7.4.322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wybenga DR, Di Giorgio J, Pileggi VJ (1971) Manual and automated methods for urea nitrogen measurement in whole serum. Clin Chim Acta 17(9):891–895. https://doi.org/10.1093/clinchem/17.9.891

    Article  CAS  Google Scholar 

  19. Toro C, Ackermann PG (1975) Practical clinical chemistry. Little Brown & Co., Boston, p 154

    Google Scholar 

  20. Jendrassik L, Grof P (1938) Colorimetric method of determination of bilirubin. Biochem Z 297:81–82

    CAS  Google Scholar 

  21. Trinder P (1969) Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6(1):24–27. https://doi.org/10.1177/000456326900600108

    Article  CAS  Google Scholar 

  22. Singh B, Kalra IS, Gupta MP, Nauriyal DC (1993) Trypanosoma evansi infection in dogs: seasonal prevalence and chemotherapy. Vet Parasitol 50(1–2):137–141. https://doi.org/10.1016/0304-4017(93)90014-E

    Article  CAS  PubMed  Google Scholar 

  23. Chowdhury P, Biswas U, Guha C, Jana PS (2005) Prevalence of canine trypanosomosis in and around Kolkata city. Indian Vet J 82(7):797–798

    Google Scholar 

  24. Prasad KL, Kondaiah PM, Rayulu VC, Srilatha C (2015) Prevalence of canine trypanosomiasis in certain areas of Andhra Pradesh. J Parasit Dis 39(2):238–240. https://doi.org/10.1007/s12639-013-0326-1

    Article  PubMed  Google Scholar 

  25. Ramesh P, Chowdary CSR, Chaitanya Y (2016) Diagnosis and treatment of canine trypanosomiasis—a case study. Int J Sci Environ Technol 5:3387–3393

    Google Scholar 

  26. Masake RA, Njuguna JT, Brown CC, Majiwa PAO (2002) The application of PCR–ELISA to the detection of Trypanosoma brucei and T. vivax infections in livestock. Vet Parasitol 105(3):179–189. https://doi.org/10.1016/S0304-4017(02)00020-1

    Article  CAS  PubMed  Google Scholar 

  27. Mugasa CM, Adams ER, Boer KR, Dyserinck HC, Büscher P, Schallig HD, Leeflang MM (2012) Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis—systematic review. PLoS Negl Trop Dis 6(1):e1438. https://doi.org/10.1371/journal.pntd.0001438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ahmed HA, Picozzi K, Welburn SC, MacLeod ET (2013) A comparative evaluation of PCR-based methods for species-specific determination of African animal trypanosomes in Ugandan cattle. Parasit Vectors 6(1):316. https://doi.org/10.1186/1756-3305-6-316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nwoha RI, Anene BM (2011) Changes in packed cell volume and hemoglobin concentration in dogs with single and conjunct experimental infections of Trypanosoma brucei and Ancylostoma caninum. Philippine J Vet Anim Sci 37(2):151–158

    Google Scholar 

  30. Ogbu KI, Anene BM, Nweze NE, Danladi MA (2017) Trypanosomosis in dogs: a review. Int J Sci Appl Res 2(2):144–174

    Google Scholar 

  31. Reddy SB, Sivajothi S (2017) Corneal opacity due to trypanosomosis in buffaloes-need of topical medication. Open Access J Sci 1(6):155–156. https://doi.org/10.15406/oajs.2017.01.00031

    Article  Google Scholar 

  32. Nwoha RIO (2013) A review on trypanosomosis in dogs and cats. Afr J Biotechnol 12(46):6432–6442. https://doi.org/10.5897/AJB2013.12093

    Article  Google Scholar 

  33. Nongo NN, Tion MT, Apaa TT, Ogunro BN (2015) A case of canine trypanosomosis with epistaxis in a two-year old alsatian dog. J Agric Vet Sci 8(11):68–72. https://doi.org/10.9790/2380-081116872

    Article  Google Scholar 

  34. Kjos SA, Snowden KF, Craig TM, Lewis B, Ronald N, Olson JK (2008) Distribution and characterization of canine Chagas disease in Texas. Vet Parasitol 152(3–4):249–256. https://doi.org/10.1016/j.vetpar.2007.12.021

    Article  CAS  PubMed  Google Scholar 

  35. Rossi SMS, Boada-Sucre AA, Simoes MT, Boher Y, Rodriguez P, Moreno M, de Ruiz ML, Marquez ML, Finol HJ, Sanoja C, Payares G (2017) Adhesion of Trypanosoma evansi to red blood cells (RBCs): Implications in the pathogenesis of anaemia and evasion of immune system. Diagn Pathol Open. https://doi.org/10.4172/2476-2024.1000122

    Article  Google Scholar 

  36. Igbokwe IO (1994) Mechanisms of cellular injury in African trypanosomiasis. Vet Bull 64(7):611–620

    Google Scholar 

  37. Sivajothi S, Rayulu VC, Reddy BS (2015) Haematological and biochemical changes in experimental Trypanosoma evansi infection in rabbits. J Parasit Dis 39(2):216–220. https://doi.org/10.1007/s12639-013-0321-6

    Article  CAS  PubMed  Google Scholar 

  38. Allam L, Ogwu D, Agbede RI, Sackey AK (2011) Hematological and serum biochemical changes in gilts experimentally infected with Trypanosoma brucei. Vet Arh 81(5):597–609

    CAS  Google Scholar 

  39. Reddy BS, Kumari KN, Sivajothi S, Rayulu VC (2016) Haemato-biochemical and thyroxin status in Trypanosoma evansi infected dogs. J Parasit Dis 40(2):491–495. https://doi.org/10.1007/s12639-014-0531-6

    Article  PubMed  Google Scholar 

  40. Sulaiman FA, Adeyemi OS (2010) Changes in haematological indices and protein concentrations in Trypanosoma brucei infected rats treated with homidium chloride and diminazene aceturate. EXCLI J 9:39

    PubMed  PubMed Central  Google Scholar 

  41. Edozie Agu W, Nwachinemelu Egbuji A (2002) Urine albumin level in mice infected with Trypanosoma brucei. Vet Arh 72(2):101–108

    Google Scholar 

  42. Nwoha RIO, Eze IO, Anene BM (2013) Serum biochemical and liver enzymes changes in dogs with single and conjunct experimental infections of Trypanosoma brucei and Ancylostoma caninum. Afr J Biotechnol 12(6):618–624. https://doi.org/10.5897/AJB10.2594

    Article  CAS  Google Scholar 

  43. Kadima KB, Gyang EO, Saror DI, Esievo KA (2000) Serum biochemical values of Trypanosoma vivax-infected cattle and the effects of lactose in saline infusion. Vet Arh 70(2):67–74

    CAS  Google Scholar 

  44. Baldissera MD, Souza CF, Grando TH, da Silva AS, Monteiro SG (2016) Involvement of oxidative stress, cholinergic and adenosinergic systems on renal damage caused by Trypanosoma evansi infection: relationship with lipid peroxidation. Microb Pathog 99:191–195. https://doi.org/10.1016/j.micpath.2016.08.028

    Article  CAS  PubMed  Google Scholar 

  45. Abenga JN, Anosa VO (2007) Serum biochemical changes in experimental gambian trypanosomosis. II. Assessing hepatic and renal dysfunction. Turk J Vet Anim Sci 31(5):293–296

    CAS  Google Scholar 

  46. Gunaseelan L, Senthil Kumar K, Selvaraj P, Kathiresan D (2009) Haemato biochemical changes in a case of canine trypanosomiasis. Tamilnadu J Vet Anim Sci 5(3):122–123

    Google Scholar 

  47. Cadioli FA, Marques LC, Machado RZ, Alessi AC, Aquino LPCT, Barnabé PA (2006) Experimental Trypanosoma evansi infection in donkeys: hematological, biochemical and histopathological changes. Arq Bras Med Vet Zootec 58(5):749–756. https://doi.org/10.1590/S0102-09352006000500008

    Article  CAS  Google Scholar 

  48. Saleh MA, Al-Salahy MB, Sanousi SA (2009) Oxidative stress in blood of camels (Camelus dromedaries) naturally infected with Trypanosoma evansi. Vet Parasitol 162(3–4):192–199. https://doi.org/10.1016/j.vetpar.2009.03.035

    Article  CAS  PubMed  Google Scholar 

  49. Ranjithkumar M, Kamili NM, Saxena A, Dan A, Dey S, Raut SS (2011) Disturbance of oxidant/antioxidant equilibrium in horses naturally infected with Trypanosoma evansi. Vet Parasitol 80(3–4):349–353. https://doi.org/10.1016/j.vetpar.2011.03.029

    Article  CAS  Google Scholar 

  50. Pandey V, Nigam R, Jaiswal AK, Sudan V, Singh RK, Yadav PK (2015) Haemato-biochemical and oxidative status of buffaloes naturally infected with Trypanosoma evansi. Vet Parasitol 212(3–4):118–122. https://doi.org/10.1016/j.vetpar.2015.07.025

    Article  CAS  PubMed  Google Scholar 

  51. Mishra RR, Senapati SK, Sahoo SC, Das MR, Sahoo G, Patra RC (2017) Trypanosomiasis induced oxidative stress and hemato-biochemical alteration in cattle. J Entomol Zool Stud 5(6):721–727

    Google Scholar 

  52. Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18(10):872–879. https://doi.org/10.1016/S0899-9007(02)00916-4

    Article  CAS  PubMed  Google Scholar 

  53. Ozden S, Catalgol B, Gezginci-Oktayoglu S, Arda-Pirincci P, Bolkent S, Alpertunga B (2009) Methiocarb-induced oxidative damage following subacute exposure and the protective effects of vitamin E and taurine in rats. Food Chem Toxicol 47(7):1676–1684. https://doi.org/10.1016/j.fct.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  54. Akanji MA, Adeyemi OS, Oguntoye SO, Sulyman F (2009) Psidium guajava extract reduces trypanosomosis associated lipid peroxidation and raises glutathione concentrations in infected animals. EXCLI J 8:148–154. https://doi.org/10.17877/DE290R-8903

    Article  Google Scholar 

  55. I Eze J, Ajanwachukwu N, C Animoke P, O Onoja S, N Anosa G, U Eze U (2016) Immune response, anaemia and oxidative stress in Trypanosoma brucei brucei infected rats fed vitamin E supplemented diet. Antiinfect Agents 14(1):28–37. https://doi.org/10.2174/221135251401160302122153

    Article  CAS  Google Scholar 

  56. Harvey JW (1997) The erythrocyte: physiology, metabolism, and biochemical disorders. In: Clinical biochemistry of domestic animals. Academic Press, pp 157–203

  57. Clemens MR, Waller HD (1987) Lipid peroxidation in erythrocytes. Chem Phys Lipids 45(2–4):251–268. https://doi.org/10.1016/0009-3084(87)90068-5

    Article  CAS  PubMed  Google Scholar 

  58. De UK, Dey S, Banerjee PS, Sahoo M (2012) Correlations among Anaplasma marginale parasitemia and markers of oxidative stress in crossbred calves. Trop Anim Health Pro 44(3):385–388. https://doi.org/10.1007/s11250-011-9938-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Vice Chancellor, Central Agricultural University and Dean, College of Veterinary Sciences and Animal Husbandry, Selesih, Aizawl, for providing the requisite facilities to carry out the present research work.

Author information

Authors and Affiliations

Authors

Contributions

KS, CGE, PR, SKB, VJ, HP, SKB, NB, and DD: conducting the research and investigation process, specifically performing the experiments, or data/evidence collection. KS, CGE, and NT: preparation, creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation)

Corresponding author

Correspondence to Chethan Gollahalli Eregowda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human or animal participants performed by any of the authors. The article reports clinical cases presented to TVCC, College of Veterinary Sciences and Animal husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram. All protocols followed were as per the guidelines from the standard textbooks in Veterinary Medicine and were in compliance with ethical standards of the institute.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, K., Eregowda, C.G., Roychoudhury, P. et al. A 5-Year Prospective Study on Incidence and Clinico-pathological Changes Associated with Naturally Occurring Trypanosomosis in Dogs of Mizoram, India. Acta Parasit. 67, 61–71 (2022). https://doi.org/10.1007/s11686-021-00425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-021-00425-0

Keywords

Navigation