Skip to main content
Log in

BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40–OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu J, Chen Z, Li Y, Zhao W, Wu J, Zhang Z. PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front Pharmacol 2021; 12: 731798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205(4): 825–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duhen R, Ballesteros-Merino C, Frye AK, Tran E, Rajamanickam V, Chang SC, Koguchi Y, Bifulco CB, Bernard B, Leidner RS, Curti BD, Fox BA, Urba WJ, Bell RB, Weinberg AD. Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat Commun 2021; 12(1): 1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 2018; 11(1): 39

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22(11): 1727–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stüber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995; 2(5): 507–521

    Article  PubMed  Google Scholar 

  7. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997; 159(8): 3838–3848

    Article  CAS  PubMed  Google Scholar 

  8. Weinberg AD, Wegmann KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 1999; 162(3): 1818–1826

    Article  CAS  PubMed  Google Scholar 

  9. Ito T, Amakawa R, Inaba M, Hori T, Ota M, Nakamura K, Takebayashi M, Miyaji M, Yoshimura T, Inaba K, Fukuhara S. Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J Immunol 2004; 172(7): 4253–4259

    Article  CAS  PubMed  Google Scholar 

  10. Croft M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 2010; 28(1): 57–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Song J, So T, Croft M. Activation of NF-κB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol 2008; 180(11): 7240–7248

    Article  CAS  PubMed  Google Scholar 

  12. Song A, Tang X, Harms KM, Croft M. OX40 and Bcl-xL promote the persistence of CD8 T cells to recall tumor-associated antigen. J Immunol 2005; 175(6): 3534–3541

    Article  CAS  PubMed  Google Scholar 

  13. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 2001; 15(3): 445–455

    Article  CAS  PubMed  Google Scholar 

  14. Song J, So T, Cheng M, Tang X, Croft M. Sustained survivin expression from OX40 costimulatory signals drives T cell clonal expansion. Immunity 2005; 22(5): 621–631

    Article  CAS  PubMed  Google Scholar 

  15. Huddleston CA, Weinberg AD, Parker DC. OX40 (CD134) engagement drives differentiation of CD4+ T cells to effector cells. Eur J Immunol 2006; 36(5): 1093–1103

    Article  CAS  PubMed  Google Scholar 

  16. Ruby CE, Weinberg AD. OX40-enhanced tumor rejection and effector T cell differentiation decreases with age. J Immunol 2009; 182(3): 1481–1489

    Article  CAS  PubMed  Google Scholar 

  17. Gramaglia I, Weinberg AD, Lemon M, Croft M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 1998; 161(12): 6510–6517

    Article  CAS  PubMed  Google Scholar 

  18. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G. Expression and function of OX40 ligand on human dendritic cells. J Immunol 1997; 159(8): 3838–3848

    Article  CAS  PubMed  Google Scholar 

  19. Piconese S, Valzasina B, Colombo MP. OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 2008; 205(4): 825–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016; 52: 50–66

    Article  CAS  PubMed  Google Scholar 

  21. Voo KS, Bover L, Harline ML, Vien LT, Facchinetti V, Arima K, Kwak LW, Liu YJ. Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J Immunol 2013; 191(7): 3641–3650

    Article  CAS  PubMed  Google Scholar 

  22. St Rose MC, Taylor RA, Bandyopadhyay S, Qui HZ, Hagymasi AT, Vella AT, Adler AJ. CD134/CD137 dual costimulation-elicited IFN-γ maximizes effector T-cell function but limits Treg expansion. Immunol Cell Biol 2013; 91(2): 173–183

    Article  CAS  PubMed  Google Scholar 

  23. Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, Qin FX, Liu YJ. OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci USA 2006; 103(35): 13138–13143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitamura N, Murata S, Ueki T, Mekata E, Reilly RT, Jaffee EM, Tani T. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer 2009; 125(3): 630–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burocchi A, Pittoni P, Gorzanelli A, Colombo MP, Piconese S. Intratumor OX40 stimulation inhibits IRF1 expression and IL-10 production by Treg cells while enhancing CD40L expression by effector memory T cells. Eur J Immunol 2011; 41(12): 3615–3626

    Article  CAS  PubMed  Google Scholar 

  26. Bulliard Y, Jolicoeur R, Zhang J, Dranoff G, Wilson NS, Brogdon JL. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol 2014; 92(6): 475–480

    Article  CAS  PubMed  Google Scholar 

  27. Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD. Science gone translational: the OX40 agonist story. Immunol Rev 2011; 244(1): 218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Linch SN, McNamara MJ, Redmond WL. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol 2015; 5: 34

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang P, Tu GH, Wei J, Santiago P, Larrabee LR, Liao-Chan S, Mistry T, Chu ML, Sai T, Lindquist K, Long H, Chaparro-Riggers J, Salek-Ardakani S, Yeung YA. Ligand-blocking and membrane-proximal domain targeting anti-OX40 antibodies mediate potent T cell-stimulatory and anti-tumor activity. Cell Rep 2019; 27(11): 3117–3123.e5

    Article  CAS  PubMed  Google Scholar 

  30. Chen AI, McAdam AJ, Buhlmann JE, Scott S, Lupher ML Jr, Greenfield EA, Baum PR, Fanslow WC, Calderhead DM, Freeman GJ, Sharpe AH. Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 1999; 11(6): 689–698

    Article  CAS  PubMed  Google Scholar 

  31. Zhang T, Song X, Xu L, Ma J, Zhang Y, Gong W, Zhang Y, Zhou X, Wang Z, Wang Y, Shi Y, Bai H, Liu N, Yang X, Cui X, Cao Y, Liu Q, Song J, Li Y, Tang Z, Guo M, Wang L, Li K. The binding of an anti-PD-1 antibody to FcyRI has a profound impact on its biological functions. Cancer Immunol Immunother 2018; 67(7): 1079–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr 2010; 66(2): 125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Cryst 2007; 40(4): 658–674

    Article  CAS  Google Scholar 

  34. Compaan DM, Hymowitz SG. The crystal structure of the costimulatory OX40–OX40L complex. Structure 2006; 14(8): 1321–1330

    Article  CAS  PubMed  Google Scholar 

  35. Bernasconi-Elias P, Hu T, Jenkins D, Firestone B, Gans S, Kurth E, Capodieci P, Deplazes-Lauber J, Petropoulos K, Thiel P, Ponsel D, Hee Choi S, LeMotte P, London A, Goetcshkes M, Nolin E, Jones MD, Slocum K, Kluk MJ, Weinstock DM, Christodoulou A, Weinberg O, Jaehrling J, Ettenberg SA, Buckler A, Blacklow SC, Aster JC, Fryer CJ. Characterization of activating mutations of NOTCH3 in T-cell acute lymphoblastic leukemia and anti-leukemic activity of NOTCH3 inhibitory antibodies. Oncogene 2016; 35(47): 6077–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66(4): 486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix. refine. Acta Crystallogr D Biol Crystallogr 2012; 68(4): 352–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs 2010; 2(5): 466–479

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tourkova IL, Yurkovetsky ZR, Shurin MR, Shurin GV. Mechanisms of dendritic cell-induced T cell proliferation in the primary MLR assay. Immunol Lett 2001; 78(2): 75–82

    Article  CAS  PubMed  Google Scholar 

  40. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002; 27(1): 19–26

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, Yeh SH, Madireddi S, Matochko WL, Gu C, Pacheco Sanchez P, Ultsch M, De Leon Boenig G, Harris SF, Leonard B, Scales SJ, Zhu JW, Christensen E, Hang JQ, Brezski RJ, Marsters S, Ashkenazi A, Sukumaran S, Chiu H, Cubas R, Kim JM, Lazar GA. Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members. MAbs 2019; 11(6): 996–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell 2018; 9(1): 63–73

    Article  PubMed  Google Scholar 

  43. Lee A, Keam SJ. Tislelizumab: first approval. Drugs 2020; 80(6): 617–624

    Article  CAS  PubMed  Google Scholar 

  44. Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer 2016; 52: 50–66

    Article  CAS  PubMed  Google Scholar 

  45. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184(2): 747–752

    Article  CAS  PubMed  Google Scholar 

  46. Gaudreau M, Milburn C, Gao C, Pritsker A, Fereshteh M, Yang Z, Barnhart B, Korman A, Quigley M. Abstract 2782: examining the dynamic regulation of OX40 following receptor agonism and T-cell activation: Implications for antibody-mediated enhancement of T-cell function. Cancer Res. 2018; 78. 2782–2782

    Article  Google Scholar 

  47. Baniel, C C, Heinze, CM., Hoefges, A., Sumiec, EG., Hank, JA., Carlson, PM., Jin, WJ., Patel, RB., Sriramaneni, RN., Gillies, SD., Erbe, AK., Schwarz, CN., Pieper, AA., Rakhmilevich, AL., Sondel, PM., Morris, ZS. In situ vaccine plus checkpoint blockade induces memory humoral response. Front. Immun 2020; 11, 1610

    Article  CAS  Google Scholar 

  48. Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA, Cheng AC, Bui TG, Tucker C, Hoen H, Weinberg A. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunology 2016; 5(4): e70

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, Clark V, Hristopoulos M, Cook R, Slaga D, Nakamura R, McCarty L, Sukumaran S, Luis E, Ye Z, Wu TD, Sumiyoshi T, Danilenko D, Lee GY, Totpal K, Ellerman D, Hötzel I, James JR, Junttila TT. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 2017; 31(3): 383–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cleary KLS, Chan HTC, James S, Glennie MJ, Cragg MS. Antibody distance from the cell membrane regulates antibody effector mechanisms. J Immunol 2017; 198(10): 3999–4011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the beamline staff members at BL17U1 of the Shanghai Synchrotron Radiation Facility (SSRF) and Yi Han from the X-ray Crystallography Platform of the Institute of Biophysics for their technical support with diffraction data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Liu.

Ethics declarations

Conflicts of interest Beibei Jiang, Tong Zhang, Minjuan Deng, Wei Jin, Yuan Hong, Xiaotong Chen, Xin Chen, Jing Wang, Hongjia Hou, Yajuan Gao, Wenfeng Gong, Xing Wang, Haiying Li, Xiaosui Zhou, Yingcai Feng, Bo Zhang, Bin Jiang, Xueping Lu, Lijie Zhang, Yang Li, Weiwei Song, Hanzi Sun, Zuobai Wang, Xiaomin Song, Zhirong Shen, Xuesong Liu, Kang Li, Lai Wang, and Ye Liu have ownership interest in BeiGene.

All procedures involving primary human T cells, DCs and PBMCs were reviewed and approved by the Institutional Review Board (IRB) at BeiGene. All experiments involving animals were approved by the Animal Care and Use Committee of BeiGene according to the guidelines of the Chinese Association for Laboratory Animal Sciences (BeiGene IACUC; IACUC No. 2019123)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Zhang, T., Deng, M. et al. BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models. Front. Med. 17, 1170–1185 (2023). https://doi.org/10.1007/s11684-023-0996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-023-0996-8

Keywords

Navigation