Skip to main content
Log in

GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209–249

    Article  PubMed  Google Scholar 

  2. Thrift AP. Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat Rev Gastroenterol Hepatol 2021; 18(6): 432–443

    Article  PubMed  Google Scholar 

  3. Sjoquist KM, Burmeister BH, Smithers BM, Zalcberg JR, Simes RJ, Barbour A, Gebski V; Australasian Gastro-Intestinal Trials Group. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: an updated meta-analysis. Lancet Oncol 2011; 12(7): 681–692

    Article  PubMed  Google Scholar 

  4. Yamasaki M, Yasuda T, Yano M, Hirao M, Kobayashi K, Fujitani K, Tamura S, Kimura Y, Miyata H, Motoori M, Shiraishi O, Makino T, Satoh T, Mori M, Doki Y. Multicenter randomized phase II study of cisplatin and fluorouracil plus docetaxel (DCF) compared with cisplatin and fluorouracil plus adriamycin (ACF) as preoperative chemotherapy for resectable esophageal squamous cell carcinoma (OGSG1003). Ann Oncol 2017; 28(1): 116–120

    Article  CAS  PubMed  Google Scholar 

  5. Breit SN, Brown DA, Tsai VW. The GDF15-GFRAL pathway in health and metabolic disease: friend or foe? Annu Rev Physiol 2021; 83(1): 127–151

    Article  CAS  PubMed  Google Scholar 

  6. Desmedt S, Desmedt V, De Vos L, Delanghe JR, Speeckaert R, Speeckaert MM. Growth differentiation factor 15: a novel biomarker with high clinical potential. Crit Rev Clin Lab Sci 2019; 56(5): 333–350

    Article  PubMed  Google Scholar 

  7. Wang Y, Jiang T, Jiang M, Gu S. Appraising growth differentiation factor 15 as a promising biomarker in digestive system tumors: a meta-analysis. BMC Cancer 2019; 19(1): 177

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li C, Wang X, Casal I, Wang J, Li P, Zhang W, Xu E, Lai M, Zhang H. Growth differentiation factor 15 is a promising diagnostic and prognostic biomarker in colorectal cancer. J Cell Mol Med 2016; 20(8): 1420–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng X, Ma N, Wang X, Hu J, Ma X, Wang J, Cao B. Exosomes derived from 5-fluorouracil-resistant colon cancer cells are enriched in GDF15 and can promote angiogenesis. J Cancer 2020; 11(24): 7116–7126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao D, Wang X, Zhang W. GDF15 predict platinum response during first-line chemotherapy and can act as a complementary diagnostic serum biomarker with CA125 in epithelial ovarian cancer. BMC Cancer 2018; 18(1): 328

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu S, Li Q, Yu Y, Cui Y, Li W, Liu T, Liu F. Activated HIF1α of tumor cells promotes chemoresistance development via recruiting GDF15-producing tumor-associated macrophages in gastric cancer. Cancer Immunol Immunother 2020; 69(10): 1973–1987

    Article  CAS  PubMed  Google Scholar 

  12. Wang XB, Jiang XR, Yu XY, Wang L, He S, Feng FY, Guo LP, Jiang W, Lu SH. Macrophage inhibitory factor 1 acts as a potential biomarker in patients with esophageal squamous cell carcinoma and is a target for antibody-based therapy. Cancer Sci 2014; 105(2): 176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma Y, He S, Gao A, Zhang Y, Zhu Q, Wang P, Yang B, Yin H, Li Y, Song J, Yue P, Li M, Zhang D, Liu Y, Wang X, Guo M, Jiao Y. Methylation silencing of TGF-β receptor type II is involved in malignant transformation of esophageal squamous cell carcinoma. Clin Epigenetics 2020; 12(1): 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geeleher P, Cox N, Huang RS. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014; 9(9): e107468

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44–57

    Article  CAS  PubMed  Google Scholar 

  17. Huang W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37(1): 1–13

    Article  PubMed  Google Scholar 

  18. Ma Y, Zhu Q, Liang J, Li Y, Li M, Zhang Y, Wang X, Zeng Y, Jiao Y. A CRISPR knockout negative screen reveals synergy between CDKs inhibitor and metformin in the treatment of human cancer in vitro and in vivo. Signal Transduct Target Ther 2020; 5(1): 152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allain EP, Rouleau M, Lévesque E, Guillemette C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 2020; 122(9): 1277–1287

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mao C, Zeng X, Zhang C, Yang Y, Xiao X, Luan S, Zhang Y, Yuan Y. Mechanisms of pharmaceutical therapy and drug resistance in esophageal cancer. Front Cell Dev Biol 2021; 9: 612451

    Article  PubMed  PubMed Central  Google Scholar 

  21. Murakami T, Shoji Y, Nishi T, Chang SC, Jachimowicz RD, Hoshimoto S, Ono S, Shiloh Y, Takeuchi H, Kitagawa Y, Hoon DSB, Bustos MA. Regulation of MRE11A by UBQLN4 leads to cisplatin resistance in patients with esophageal squamous cell carcinoma. Mol Oncol 2021; 15(4): 1069–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Assadi A, Zahabi A, Hart RA. GDF15, an update of the physiological and pathological roles it plays: a review. Pflugers Arch 2020; 472(11): 1535–1546

    Article  CAS  PubMed  Google Scholar 

  23. Rochette L, Méloux A, Zeller M, Cottin Y, Vergely C. Functional roles of GDF15 in modulating microenvironment to promote carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1866(8): 165798

    Article  CAS  PubMed  Google Scholar 

  24. Deng J, Zhang M, Zhang H, Lu C, Hou G, Feng Y, Fang Z, Lv X. Value of growth/differentiation factor 15 in diagnosis and the evaluation of chemotherapeutic response in lung cancer. Clin Ther 2021; 43(4): 747–759

    Article  CAS  PubMed  Google Scholar 

  25. Okamoto M, Koma YI, Kodama T, Nishio M, Shigeoka M, Yokozaki H. Growth differentiation factor 15 promotes progression of esophageal squamous cell carcinoma via TGF-β type II receptor activation. Pathobiology 2020; 87(2): 100–113

    Article  CAS  PubMed  Google Scholar 

  26. Li S, Ma YM, Zheng PS, Zhang P. GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res 2018; 37(1): 80

    Article  PubMed  PubMed Central  Google Scholar 

  27. Urakawa N, Utsunomiya S, Nishio M, Shigeoka M, Takase N, Arai N, Kakeji Y, Koma Y, Yokozaki H. GDF15 derived from both tumor-associated macrophages and esophageal squamous cell carcinomas contributes to tumor progression via Akt and Erk pathways. Lab Invest 2015; 95(5): 491–503

    Article  CAS  PubMed  Google Scholar 

  28. Yang CZ, Ma J, Zhu DW, Liu Y, Montgomery B, Wang LZ, Li J, Zhang ZY, Zhang CP, Zhong LP. GDF15 is a potential predictive biomarker for TPF induction chemotherapy and promotes tumorigenesis and progression in oral squamous cell carcinoma. Ann Oncol 2014; 25(6): 1215–1222

    Article  CAS  PubMed  Google Scholar 

  29. Breen DM, Kim H, Bennett D, Calle RA, Collins S, Esquejo RM, He T, Joaquim S, Joyce A, Lambert M, Lin L, Pettersen B, Qiao S, Rossulek M, Weber G, Wu Z, Zhang BB, Birnbaum MJ. GDF-15 neutralization alleviates platinum-based chemotherapy-induced emesis, anorexia, and weight loss in mice and nonhuman primates. Cell Metab 2020; 32(6): 938–950.e6

    Article  CAS  PubMed  Google Scholar 

  30. Tsai VWW, Husaini Y, Sainsbury A, Brown DA, Breit SN. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: implications for obesity, cachexia, and other associated diseases. Cell Metab 2018; 28(3): 353–368

    Article  CAS  PubMed  Google Scholar 

  31. Zheng H, Yu S, Zhu C, Guo T, Liu F, Xu Y. HIF1a promotes tumor chemoresistance via recruiting GDF15-producing TAMs in colorectal cancer. Exp Cell Res 2021; 398(2): 112394

    Article  CAS  PubMed  Google Scholar 

  32. Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, Zhang C, Ring AM, Young LH, Medzhitov R. GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell 2019; 178(5): 1231–1244.e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, Mondal K, Gao Z, Ayupova D, Taskar P, Li D, Starck SR, Chen HH, McEntee M, Katewa SD, Phung V, Wang M, Kekatpure A, Lakshminarasimhan D, White A, Olland A, Haldankar R, Solloway MJ, Hsu JY, Wang Y, Tang J, Lindhout DA, Allan BB. Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med 2020; 26(8): 1264–1270

    Article  PubMed  Google Scholar 

  34. Vander Ark A, Cao J, Li X. TGF-β receptors: in and beyond TGF-β signaling. Cell Signal 2018; 52: 112–120

    Article  Google Scholar 

  35. Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci 2019; 20(23): 5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer 2020; 20(2): 74–88

    Article  CAS  PubMed  Google Scholar 

  37. Chen P, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Chen XP. Influence of UGT1A1 polymorphisms on the outcome of acute myeloid leukemia patients treated with cytarabine-base regimens. J Transl Med 2018; 16(1): 197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu Q, Zhang T, Xie C, Qiu H, Liu B, Huang L, Peng P, Feng J, Chen J, Zang A, Yuan X. UGT1A polymorphisms associated with worse outcome in colorectal cancer patients treated with irinotecan-based chemotherapy. Cancer Chemother Pharmacol 2018; 82(1): 87–98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaohui Liu at the Metabolomics Center at Tsinghua University National Protein Science Facility (Beijing) for her technical help. This work was supported by the National Key R&D Program of China (No. 2021YFC2501004), the National Natural Science Foundation of China (Nos. 82172988, 81772490 and 81502023), and the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CIFMS) (Nos. 2021-1-I2M-014 and 2021-1-I2M-067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feiyue Feng, Peng Yuan or Xiaobing Wang.

Ethics declarations

Yingxi Du, Yarui Ma, Qing Zhu, Yong Fu, Yutong Li, Ying Zhang, Mo Li, Feiyue Feng, Peng Yuan, and Xiaobing Wang declare that no conflict of interest exists. All animal protocols had received approval from the Animal Ethical Committee of the Cancer Hospital, Chinese Academy of Medical Sciences (Beijing, China).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Ma, Y., Zhu, Q. et al. GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma. Front. Med. 17, 119–131 (2023). https://doi.org/10.1007/s11684-022-0949-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-022-0949-7

Keywords

Navigation