Skip to main content
Log in

Association between resting-state functional connectivity of amygdala subregions and peripheral pro-inflammation cytokines levels in bipolar disorder

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The pathophysiological mechanisms of bipolar disorder (BD) are not completely known, and systemic inflammation and immune dysregulation are considered as risk factors. Previous neuroimaging studies have proved metabolic, structural and functional abnormalities of the amygdala in BD, suggesting the vital role of amygdala in BD patients. This study aimed to test the underlying neural mechanism of inflammation-induced functional connectivity (FC) in the amygdala subregions of BD patients. Resting-state functional MRI (rs-fMRI) was used to delineate the amygdala FC from two pairs of amygdala seed regions (the bilateral lateral and medial amygdala) in 51 unmedicated BD patients and 69 healthy controls (HCs). The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were measured in the serum. The correlation between abnormal levels of pro-inflammatory cytokines and FC values were calculated in BD patients. The BD group exhibited decreased FC between the right medial amygdala and bilateral medial frontal cortex (MFC), and decreased FC between the left medial amygdala and the left temporal pole (TP), right orbital inferior frontal gyrus compared with HCs. The BD patients had higher levels of TNF-α than HCs. Correlation analysis showed negative correlation between the TNF-α level and abnormal FC of the right medial amygdala-bilateral MFC; and negative correlation between TNF-α levels and abnormal FC of the left medial amygdala-left TP in BD group. These findings suggest that dysfunctional and immune dysregulation between the amygdala and the frontotemporal circuitry might play a critical role in the pathogenesis of BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Ambrosi, E., Arciniegas, D. B., Madan, A., Curtis, K. N., Patriquin, M. A., Jorge, R. E. … Salas, R. (2017). Insula and amygdala resting-state functional connectivity differentiate bipolar from unipolar depression. Acta Psychiatrica Scandinavica, 136(1), 129–139. https://doi.org/10.1111/acps.12724

  • Borras-Ferris, L., Perez-Ramirez, U., & Moratal, D. (2019). link-level functional connectivity neuroalterations in autism spectrum disorder: a developmental resting-state fMRI study. Diagnostics (Basel), 9(1). https://doi.org/10.3390/diagnostics9010032

  • Brietzke, E., Stertz, L., Fernandes, B. S., Kauer-Sant’Anna, M., Mascarenhas, M., Escosteguy, V. A. … Kapczinski, F. (2009). Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. Journal of Affective Disorders, 116(3), 214–217. https://doi.org/10.1016/j.jad.2008.12.001

  • Brunoni, A. R., Supasitthumrong, T., Teixeira, A. L., Vieira, E. L., Gattaz, W. F., Bensenor, I. M. … Maes, M. (2020). Differences in the immune-inflammatory profiles of unipolar and bipolar depression. Journal of Affective Disorders, 2628–2615. https://doi.org/10.1016/j.jad.2019.10.037

  • Bzdok, D., Laird, A. R., Zilles, K., Fox, P. T., & Eickhoff, S. B. (2013). An investigation of the structural, connectional, and functional subspecialization in the human amygdala. Human Brain Mapping, 34(12), 3247–3266. https://doi.org/10.1002/hbm.22138

    Article  PubMed  Google Scholar 

  • Capuron, L., & Miller, A. H. (2011). Immune system to brain signaling: neuropsychopharmacological implications. Pharmacology & Therapeutics, 130(2), 226–238. https://doi.org/10.1016/j.pharmthera.2011.01.014

    Article  CAS  Google Scholar 

  • Chen, G., Zhao, L., Jia, Y., Zhong, S., Chen, F., Luo, X. … Wang, Y. (2019a). Abnormal cerebellum-DMN regions connectivity in unmedicated bipolar II disorder. Journal of Affective Disorders, 243441–243447. https://doi.org/10.1016/j.jad.2018.09.076

  • Chen, M. H., Chang, W. C., Hsu, J. W., Huang, K. L., Tu, P. C., Su, T. P. … Bai, Y. M. (2019b). Correlation of proinflammatory cytokines levels and reduced gray matter volumes between patients with bipolar disorder and unipolar depression. Journal of Affective Disorders, 2458–2415. https://doi.org/10.1016/j.jad.2018.10.106

  • Davies, K. A., Cooper, E., Voon, V., Tibble, J., Cercignani, M., & Harrison, N. A. (2020). Interferon and anti-TNF therapies differentially modulate amygdala reactivity which predicts associated bidirectional changes in depressive symptoms. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-0790-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Deco, G., & Kringelbach, M. L. (2014). Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron, 84(5), 892–905. https://doi.org/10.1016/j.neuron.2014.08.034

    Article  CAS  PubMed  Google Scholar 

  • Dickerson, F., Severance, E., & Yolken, R. (2017). The microbiome, immunity, and schizophrenia and bipolar disorder. Brain, Behavior, and Immunity, 6246–6252. https://doi.org/10.1016/j.bbi.2016.12.010

  • Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118(2), 503–508. https://doi.org/10.1378/chest.118.2.503

    Article  CAS  PubMed  Google Scholar 

  • Fan, C., Song, Q., Wang, P., Li, Y., Yang, M., Liu, B., & Yu, S. Y. (2018). Curcumin protects against chronic stress-induced dysregulation of neuroplasticity and depression-like behaviors via suppressing IL-1beta pathway in rats. Neuroscience, 39292–39106. https://doi.org/10.1016/j.neuroscience.2018.09.028

  • Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L. … Jiang, T. (2016). The Human Brainnetome Atlas: a new brain atlas based on connectional architecture. Cerebal Cortex, 26(8), 3508–3526. https://doi.org/10.1093/cercor/bhw157

  • Felger, J. C. (2018). Imaging the role of inflammation in mood and anxiety-related disorders. Curr Neuropharmacol, 16(5), 533–558. https://doi.org/10.2174/1570159X15666171123201142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedorowicz, J. G., Prossin, A. R., Johnson, C. P., Christensen, G. E., Magnotta, V. A., & Wemmie, J. A. (2015). Peripheral inflammation during abnormal mood states in bipolar I disorder. Journal of Affective Disorders, 187172–187178. https://doi.org/10.1016/j.jad.2015.08.036

  • Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283. https://doi.org/10.1152/jn.90777.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346–355. https://doi.org/10.1002/mrm.1910350312

    Article  CAS  PubMed  Google Scholar 

  • Goldman, D. A., Sankar, A., Colic, L., Villa, L., Kim, J. A., Pittman, B. … Blumberg, H. P. (2021). A graph theory-based whole brain approach to assess mood state differences in adolescents and young adults with bipolar disorder. Bipolar Disorders. https://doi.org/10.1111/bdi.13144

  • Goldsmith, D. R., Rapaport, M. H., & Miller, B. J. (2016). A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Molecular Psychiatry, 21(12), 1696–1709. https://doi.org/10.1038/mp.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H., & Kivimaki, M. (2015). Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain, Behavior, and Immunity, 49206–49215. https://doi.org/10.1016/j.bbi.2015.06.001

  • Ho, N. F., Li, H. C. P., Lee, D. R., Chew, Q. H., Chen, G., & Sim, K. (2019). The amygdala in schizophrenia and bipolar disorder: a synthesis of structural MRI, diffusion tensor imaging, and resting-state functional connectivity findings. Harvard Review of Psychiatry, 27(3), 150–164. https://doi.org/10.1097/HRP.0000000000000207

    Article  PubMed  Google Scholar 

  • Isgren, A., Sellgren, C., Ekman, C. J., Holmen-Larsson, J., Blennow, K., Zetterberg, H. … Landen, M. (2017). Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes. Brain, Behavior, and Immunity, 65195–65201. https://doi.org/10.1016/j.bbi.2017.05.002

  • Jalbrzikowski, M., Larsen, B., Hallquist, M. N., Foran, W., Calabro, F., & Luna, B. (2017). Development of white matter microstructure and intrinsic functional connectivity between the amygdala and ventromedial prefrontal cortex: associations with anxiety and depression. Biological Psychiatry, 82(7), 511–521. https://doi.org/10.1016/j.biopsych.2017.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517(7534), 284–292. https://doi.org/10.1038/nature14188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841. https://doi.org/10.1016/s1053-8119(02)91132-8

    Article  PubMed  Google Scholar 

  • Jesudas, B. R., Nandeesha, H., Menon, V., & Allimuthu, P. (2019). Relationship of elevated neural cell adhesion molecule 1 with interleukin-10 and disease severity in bipolar disorder. Asian Journal of Psychiatry, 47101849. https://doi.org/10.1016/j.ajp.2019.101849

  • Johnston, J., Wang, F., Liu, J., Blond, B. N., Wallace, A., Liu, J. … Blumberg, H. P. (2017). Multimodal neuroimaging of frontolimbic structure and function associated with suicide attempts in adolescents and young adults with bipolar disorder. The American Journal of Psychiatry, 174(7), 667–675. https://doi.org/10.1176/appi.ajp.2016.15050652

  • Karabulut, S., Tasdemir, I., Akcan, U., Kucukali, C. I., Tuzun, E., & Cakir, S. (2019). Inflammation and neurodegeneration in patients with early-Stageand chronic bipolar disorder. Türk Psikiyatri Dergisi, 30(2), 75–81

    PubMed  Google Scholar 

  • Kasai, K., Shenton, M. E., Salisbury, D. F., Onitsuka, T., Toner, S. K., Yurgelun-Todd, D. … McCarley, R. W. (2003). Differences and similarities in insular and temporal pole MRI gray matter volume abnormalities in first-episode schizophrenia and affective psychosis. Archives Of General Psychiatry, 60(11), 1069–1077. https://doi.org/10.1001/archpsyc.60.11.1069

  • Kupfer, D. J. (2005). The increasing medical burden in bipolar disorder. JAMA, 293(20), 2528–2530. https://doi.org/10.1001/jama.293.20.2528

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Liu, P., Andari, E., Zhang, A., & Zhang, K. (2018). The role of amygdala in patients with euthymic bipolar disorder during resting state. Frontiers in Psychiatry, 9445, https://doi.org/10.3389/fpsyt.2018.00445

  • Lin, K., Shao, R., Geng, X., Chen, K., Lu, R., Gao, Y. … So, K. F. (2018). Illness, at-risk and resilience neural markers of early-stage bipolar disorder. Journal of Affective Disorders, 23816–23823. https://doi.org/10.1016/j.jad.2018.05.017

  • Lin, K., Shao, R., Wang, R., Lu, W., Zou, W., Chen, K. … So, K. F. (2020). Inflammation, brain structure and cognition interrelations among individuals with differential risks for bipolar disorder. Brain, Behavior, and Immunity, 83192–83199. https://doi.org/10.1016/j.bbi.2019.10.010

  • Liu, K., Zhao, X., Lu, X., Zhu, X., Chen, H., Wang, M., ... Lv, Z. (2019). Effect of selective serotonin reuptake inhibitor on prefrontal-striatal connectivity is dependent on the level of TNF-alpha in patients with major depressive disorder. Psychological Medicine, 49(15), 2608–2616. https://doi.org/10.1017/S0033291718003616

  • Liu, T. Y., Chen, Y. S., Su, T. P., Hsieh, J. C., & Chen, L. F. (2014). Abnormal early gamma responses to emotional faces differentiate unipolar from bipolar disorder patients. BioMed Research International, 2014906104, https://doi.org/10.1155/2014/906104

  • McIntosh, R. C., Paul, R., Ndhlovu, L. C., Hidalgo, M., Lobo, J. D., Walker, M. … Kallianpur, K. J. (2018). Resting-state connectivity and spontaneous activity of ventromedial prefrontal cortex predict depressive symptomology and peripheral inflammation in HIV. The Journal of NeuroVirology, 24(5), 616–628. https://doi.org/10.1007/s13365-018-0658-9

  • Mehta, N. D., Haroon, E., Xu, X., Woolwine, B. J., Li, Z., & Felger, J. C. (2018). Inflammation negatively correlates with amygdala-ventromedial prefrontal functional connectivity in association with anxiety in patients with depression: Preliminary results. Brain, Behavior, and Immunity, 73725–73730. https://doi.org/10.1016/j.bbi.2018.07.026

  • Modabbernia, A., Taslimi, S., Brietzke, E., & Ashrafi, M. (2013). Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biological Psychiatry, 74(1), 15–25. https://doi.org/10.1016/j.biopsych.2013.01.007

    Article  CAS  PubMed  Google Scholar 

  • Mosher, C. P., Zimmerman, P. E., & Gothard, K. M. (2010). Response characteristics of basolateral and centromedial neurons in the primate amygdala. The Journal of Neuroscience, 30(48), 16197–16207. https://doi.org/10.1523/JNEUROSCI.3225-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee, P., Sabharwal, A., Kotov, R., Szekely, A., Parsey, R., Barch, D. M., & Mohanty, A. (2016). Disconnection between amygdala and medial prefrontal cortex in psychotic disorders. Schizophrenia Bulletin, 42(4), 1056–1067. https://doi.org/10.1093/schbul/sbw012

    Article  PubMed  PubMed Central  Google Scholar 

  • Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-state functional connectivity in major depressive disorder: A review. Neuroscience & Biobehavioral Reviews, 56330–56344. https://doi.org/10.1016/j.neubiorev.2015.07.014

  • Muscatell, K. A., Dedovic, K., Slavich, G. M., Jarcho, M. R., Breen, E. C., Bower, J. E. … Eisenberger, N. I. (2015). Greater amygdala activity and dorsomedial prefrontal-amygdala coupling are associated with enhanced inflammatory responses to stress. Brain, Behavior, and Immunity, 4346–4353. https://doi.org/10.1016/j.bbi.2014.06.201

  • Najjar, S., Pearlman, D. M., Alper, K., Najjar, A., & Devinsky, O. (2013). Neuroinflammation and psychiatric illness. Journal of Neuroinflammation, 1043, https://doi.org/10.1186/1742-2094-10-43

  • Neves, M. C., Albuquerque, M. R., Malloy-Diniz, L., Nicolato, R., Silva, N. F., de Souza-Duran, F. L. … Correa, H. (2015). A voxel-based morphometry study of gray matter correlates of facial emotion recognition in bipolar disorder. Psychiatry Research, 233(2), 158–164. https://doi.org/10.1016/j.pscychresns.2015.05.009

  • Niu, Z., Yang, L., Wu, X., Zhu, Y., Chen, J., & Fang, Y. (2019). The relationship between neuroimmunity and bipolar disorder: mechanism and translational application. Neuroscience Bulletin, 35(4), 595–607. https://doi.org/10.1007/s12264-019-00403-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J. … Gross, J. J. (2009). Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms. Psychological Science, 20(11), 1322–1331. https://doi.org/10.1111/j.1467-9280.2009.02459.x

  • Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The Enigmatic temporal pole: a review of findings on social and emotional processing. Brain, 130(Pt 7), 1718–1731. https://doi.org/10.1093/brain/awm052

    Article  PubMed  Google Scholar 

  • Pan, A. Y., Ryu, E., Geske, J. R., Zhou, X. Y., McElroy, S. L., Cicek, M. S. … Andreazza, A. C. (2020). The impact of sample processing on inflammatory markers in serum: Lessons learned. World Journal of Biological Psychiatry, 21(3), 230–237. https://doi.org/10.1080/15622975.2019.1696474

  • Pantovic-Stefanovic, M., Petronijevic, N., Dunjic-Kostic, B., Velimirovic, M., Nikolic, T., Jurisic, V. … Ivkovic, M. (2018). sVCAM-1, sICAM-1, TNF-alpha and IL-6 levels in bipolar disorder type I: Acute, longitudinal and therapeutic implications. World Journal of Biological Psychiatry, 19(sup2):S41-S51. https://doi.org/10.1080/15622975.2016.1259498

  • Pape, H. C., & Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological Reviews, 90(2), 419–463. https://doi.org/10.1152/physrev.00037.2009

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska, G., Halaris, A., & Selemon, L. D. (2001). Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biological Psychiatry, 49(9), 741–752. https://doi.org/10.1016/s0006-3223(01)01080-0

    Article  CAS  PubMed  Google Scholar 

  • Rosenblat, J. D., & McIntyre, R. S. (2016). Bipolar Disorder and Inflammation. Psychiatric Clinics of North America, 39(1), 125–137. https://doi.org/10.1016/j.psc.2015.09.006

    Article  PubMed  Google Scholar 

  • Rowland, T., Perry, B. I., Upthegrove, R., Barnes, N., Chatterjee, J., Gallacher, D., & Marwaha, S. (2018). Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: systematic review and meta-analyses. British Journal of Psychiatry, 213(3), 514–525. https://doi.org/10.1192/bjp.2018.144

    Article  Google Scholar 

  • Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Gotimer, K. … Milham, M. P. (2009). Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 45(2), 614–626. https://doi.org/10.1016/j.neuroimage.2008.11.030

  • Savitz, J. B., Price, J. L., & Drevets, W. C. (2014). Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neuroscience and Biobehavioral Reviews, 42132–42147. https://doi.org/10.1016/j.neubiorev.2014.02.008

  • Sayana, P., Colpo, G. D., Simoes, L. R., Giridharan, V. V., Teixeira, A. L., Quevedo, J., & Barichello, T. (2017). A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients. Journal of Psychiatric Research, 92160–92182. https://doi.org/10.1016/j.jpsychires.2017.03.018

  • Spuhler, K., Bartlett, E., Ding, J., DeLorenzo, C., Parsey, R., & Huang, C. (2018). Diffusion entropy: a potential neuroimaging biomarker of bipolar disorder in the temporal pole. Synapse, 72(2), https://doi.org/10.1002/syn.22015

  • Tang, Y., Ma, Y., Chen, X., Fan, X., Jiang, X., Zhou, Y. … Wei, S. (2018). Age-specific effects of structural and functional connectivity in prefrontal-amygdala circuitry in women with bipolar disorder. BMC Psychiatry, 18(1), 177. https://doi.org/10.1186/s12888-018-1732-9

  • Tseng, W. L., Thomas, L. A., Harkins, E., Stoddard, J., Zarate, C. J., Pine, D. S. … Brotman, M. A. (2016). Functional connectivity during masked and unmasked face emotion processing in bipolar disorder. Psychiatry Research: Neuroimaging, 2581–2589. https://doi.org/10.1016/j.pscychresns.2016.10.006

  • Tsujii, N., Mikawa, W., Adachi, T., Hirose, T., & Shirakawa, O. (2018). Shared and differential cortical functional abnormalities associated with inhibitory control in patients with schizophrenia and bipolar disorder. Scientific Reports, 8(1), 4686. https://doi.org/10.1038/s41598-018-22929-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, P. C., Li, C. T., Lin, W. C., Chen, M. H., Su, T. P., & Bai, Y. M. (2017). Structural and functional correlates of serum soluble IL-6 receptor level in patients with bipolar disorder. Journal of Affective Disorders, 219172–219177. https://doi.org/10.1016/j.jad.2017.04.036

  • Vai, B., Poletti, S., Radaelli, D., Dallaspezia, S., Bulgarelli, C., Locatelli, C. … Benedetti, F. (2015). Successful antidepressant chronotherapeutics enhance fronto-limbic neural responses and connectivity in bipolar depression. Psychiatry Research, 233(2), 243–253. https://doi.org/10.1016/j.pscychresns.2015.07.015

  • Vai, B., Serretti, A., Poletti, S., Mascia, M., Lorenzi, C., Colombo, C., & Benedetti, F. (2020). Cortico-limbic functional connectivity mediates the effect of early life stress on suicidality in bipolar depressed 5-HTTLPR*s carriers. Journal of Affective Disorders, 263420–263427. https://doi.org/10.1016/j.jad.2019.11.142

  • Van der Schot, A., Kahn, R., Ramsey, N., Nolen, W., & Vink, M. (2010). Trait and state dependent functional impairments in bipolar disorder. Psychiatry Research, 184(3), 135–142. https://doi.org/10.1016/j.pscychresns.2010.07.009

    Article  PubMed  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. Neuroimage, 59(1), 431–438. https://doi.org/10.1016/j.neuroimage.2011.07.044

    Article  PubMed  Google Scholar 

  • Vieta, E., Berk, M., Schulze, T. G., Carvalho, A. F., Suppes, T., Calabrese, J. R. … Grande, I. (2018). Bipolar disorders. Nature Reviews Disease Primers, 418008. https://doi.org/10.1038/nrdp.2018.8

  • Wang, Y., Zhong, S., Jia, Y., Sun, Y., Wang, B., Liu, T. … Huang, L. (2016). Disrupted resting-state functional connectivity in nonmedicated bipolar disorder. Radiology, 280(2), 529–536. https://doi.org/10.1148/radiol.2016151641

  • Wang, Y., Zhong, S., Jia, Y., Zhou, Z., Zhou, Q., & Huang, L. (2015). Reduced interhemispheric resting-state functional connectivity in unmedicated bipolar II disorder. Acta Psychiatrica Scandinavica, 132(5), 400–407. https://doi.org/10.1111/acps.12429

    Article  CAS  PubMed  Google Scholar 

  • Wilczynska, K., Simonienko, K., Konarzewska, B., Szajda, S. D., & Waszkiewicz, N. (2018). Morphological changes of the brain in mood disorders. Psychiatria Polska, 52(5), 797–805. https://doi.org/10.12740/PP/89553

    Article  PubMed  Google Scholar 

  • Wu, Y., Li, H., Zhou, Y., Yu, J., Zhang, Y., Song, M. … Jiang, T. (2016). Sex-specific neural circuits of emotion regulation in the centromedial amygdala. Scientific Reports, 623112, https://doi.org/10.1038/srep23112

  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A. … Milham, M. P. (2013a). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76183–76201. https://doi.org/10.1016/j.neuroimage.2013.03.004

  • Yan, C. G., Craddock, R. C., Zuo, X. N., Zang, Y. F., & Milham, M. P. (2013b). Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80246–80262. https://doi.org/10.1016/j.neuroimage.2013.04.081

  • Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data Processing& Analysis for (Resting-State) Brain Imaging. Neuroinformatics, 14(3), 339-351. https://doi.org/10.1007/s12021-016-9299-4

  • Yin, Z., Chang, M., Wei, S., Jiang, X., Zhou, Y., Cui, L. … Tang, Y. (2018). Decreased functional connectivity in insular subregions in depressive episodes of bipolar disorder and major depressive disorder. Frontiers in Neuroscience, 12842, https://doi.org/10.3389/fnins.2018.00842

  • Yu, H. L., Liu, W. B., Wang, T., Huang, P. Y., Jie, L. Y., Sun, J. Z. … Zhang, M. M. (2017). Difference in resting-state fractional amplitude of low-frequency fluctuation between bipolar depression and unipolar depression patients. European Review for Medical and Pharmacological Sciences, 21(7), 1541–1550

  • Yu, H., Meng, Y. J., Li, X. J., Zhang, C., Liang, S., Li, M. L. … Li, T. (2019). Common and distinct patterns of grey matter alterations in borderline personality disorder and bipolar disorder: voxel-based meta-analysis. British Journal of Psychiatry, 215(1), 395–403. https://doi.org/10.1192/bjp.2019.44

  • Zhang, L., Opmeer, E. M., van der Meer, L., Aleman, A., Curcic-Blake, B., & Ruhe, H. G. (2018a). Altered frontal-amygdala effective connectivity during effortful emotion regulation in bipolar disorder. Bipolar Disorder, 20(4), 349–358. https://doi.org/10.1111/bdi.12611

    Article  Google Scholar 

  • Zhang, L., Wu, H., Xu, J., & Shang, J. (2018b). Abnormal global functional connectivity patterns in medication-free major depressive disorder. Frontiers in Neuroscience, 12692, https://doi.org/10.3389/fnins.2018.00692

  • Zhong, Y., Wang, C., Gao, W., Xiao, Q., Lu, D., Jiao, Q. … Lu, G. (2019). Aberrant Resting-State Functional Connectivity in the Default Mode Network in Pediatric Bipolar Disorder Patients with and without Psychotic Symptoms. Neurosci Bull, 35(4), 581–590. https://doi.org/10.1007/s12264-018-0315-6

  • Zhou, Q., Womer, F. Y., Kong, L., Wu, F., Jiang, X., Zhou, Y. … Wang, F. (2017). Trait-related cortical-subcortical dissociation in bipolar disorder: analysis of network degree centrality. The Journal of Clinical Psychiatry, 78(5), 584–591. https://doi.org/10.4088/JCP.15m10091

  • Zuliani, R., Moorhead, T. W., Job, D., McKirdy, J., Sussmann, J. E., Johnstone, E. C. … McIntosh, A. M. (2009). Genetic variation in the G72 (DAOA) gene affects temporal lobe and amygdala structure in subjects affected by bipolar disorder. Bipolar Disorder, 11(6), 621–627. https://doi.org/10.1111/j.1399-5618.2009.00731.x

Download references

Funding

The study was supported by grants from the National Natural Science Foundation of China (81671670, 81971597 and 82102003); Project in Basic Research and Applied Basic Research in General Colleges and Universities of Guangdong, China (2018KZDXM009); National Key Research and Development Project (2020YFC2005700). The funding organizations play no further role in study design, data collection, analysis and interpretation and paper writing.

Author information

Authors and Affiliations

Authors

Contributions

Ying Wang designed the study; Jiaying Gong, Ying Wang contributed to data sources and study selection; Jiaying Gong, Guanmao Chen, Feng Chen, Shuming Zhong, Pan Chen, Hui Zhong, Shunkai Lai, Guixian Tang, Jurong Wang, Zhenye Luo, Zhangzhang Qi, Yanbin Jia contributed to data acquisition; Guanmao Chen, Feng Chen contributed to data analysis; Jiaying Gong wrote the manuscript; Pan Chen, Feng Chen, Jiaying Gong, Guanmao Chen, Feng Chen, Hui Zhong, Li Huang, Ying Wang revised the manuscript. All authors contributed to and have approved the final manuscript. We thank all the authors of the included studies who responded to our requests for further information.

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of First Affiliated Hospital of Jinan University, Guangzhou, China.

Consent to participate

All subjects signed a written informed consent form after full writing and verbal explanation of the study.

Consent to publish

All authors contributed to and have approved the submission and publishment of final manuscript.

Conflict of interest

The authors have declared that no competing interest exists.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 5.65 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Chen, G., Chen, F. et al. Association between resting-state functional connectivity of amygdala subregions and peripheral pro-inflammation cytokines levels in bipolar disorder. Brain Imaging and Behavior 16, 1614–1626 (2022). https://doi.org/10.1007/s11682-022-00636-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-022-00636-7

Keywords

Navigation