Skip to main content
Log in

Longitudinal mapping of cortical surface changes in Huntington’s Disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

This paper investigated cortical folding in Huntington’s disease to understand how disease progression impacts the surface of the cortex. Cortical morphometry changes in eight gyral based regions of interest (i.e. the left and right hemispheres of the lateral occipital, precentral, superior frontal and rostral middle gyri) were examined. We used existing neuroimaging data from IMAGE-HD, comprising 26 pre-symptomatic, 26 symptomatic and 24 healthy control individuals at three separate time points (baseline, 18-month, 30-month). Local gyrification index and cortical thickness were derived as the measures of cortical morphometry using FreeSurfer 6.0’s longitudinal pipeline. The gyral based regions of interest were identified using the Desikan-Killiany Atlas. A Group by Time repeated measures ANCOVA was conducted for each region of interest. We found significantly lower LGI at a group level in the right hemisphere lateral occipital region and both hemispheres of the precentral region; as well as significantly reduced cortical thickness at a group level in both hemispheres of the lateral occipital and precentral regions and the right hemisphere of the superior frontal region. We also found a Group by Time interaction for Local gyrification index in the right hemisphere lateral occipital region. This change was largely driven by a significant decrease in the symptomatic group between baseline and 18-months. Additionally, lower local gyrification index and cortical thickness were associated with higher disease burden score. These findings demonstrate that significant longitudinal decline in right hemisphere local gyrification index is evident during manifest disease in lateral occipital cortex and that these changes are more profound in individuals with greater disease burden score.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data and materials were collected as part of the IMAGE-HD study and are available upon request.

References

  • Babcock, D. T., & Ganetzky, B. (2015). Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proceedings of the National Academy of Sciences, 112(39), E5427–E5433. https://doi.org/10.1073/pnas.1516217112

  • Blanken, L. M. E., Mous, S. E., Ghassabian, A., Muetzel, R. L., Schoemaker, N. K., Marroun, E. … Verhulst, F. C. (2015). Cortical morphology in 6-to 10-year old children with autistic traits: a population-based neuroimaging study. American Journal of Psychiatry, 172(5), 479–486

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194

    Article  CAS  Google Scholar 

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D. … Hyman, B. T. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980

  • Domínguez, D., Egan, J. F., Gray, G. F., Poudel, M. A., Churchyard, G. R., Chua, A. … Georgiou-Karistianis, N. (2013). Multi-modal neuroimaging in premanifest and early huntington’s disease: 18 month longitudinal data from the IMAGE-HD Study. PLoS ONE, 8(9), e74131. https://doi.org/10.1371/journal.pone.0074131

  • Domínguez, J. F., Stout, J. C., Poudel, G., Churchyard, A., Chua, P., Egan, G. F., & Georgiou-Karistianis, N. (2016). Multimodal imaging biomarkers in premanifest and early Huntington’s disease: 30-month IMAGE-HD data. The British Journal of Psychiatry, 208(6), 571–578

    Article  Google Scholar 

  • Douaud, G., Gaura, V., Ribeiro, M. J., Lethimonnier, F., Maroy, R., Verny, C. … Hantraye, P. (2006). Distribution of grey matter atrophy in Huntington’s disease patients: a combined ROI-based and voxel-based morphometric study. Neuroimage, 32(4), 1562–1575

  • Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 11050–11055. https://doi.org/10.1073/pnas.200033797

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207

    Article  CAS  Google Scholar 

  • Georgiou-Karistianis, N., Gray, M. A., Dymowski, A. R., Bohanna, I., Johnston, L. A., Churchyard, A. … Egan, G. F. (2013a). Automated differentiation of pre-diagnosis Huntington’s disease from healthy control individuals based on quadratic discriminant analysis of the basal ganglia: the IMAGE-HD study. Neurobiology of Disease, 51, 82–92

  • Georgiou-Karistianis, N., Scahill, R., Tabrizi, S. J., Squitieri, F., & Aylward, E. (2013). Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neuroscience and Biobehavioral Reviews, 37(3), 480–490

    Article  Google Scholar 

  • Georgiou-Karistianis, N., Sritharan, A., Asadi, H., Johnston, L., Churchyard, A., & Egan, G. (2011). Diffusion tensor imaging in Huntington’s disease reveals distinct patterns of white matter degeneration associated with motor and cognitive deficits. Brain Imaging and Behavior, 5(3), 171–180

    Article  Google Scholar 

  • Georgiou‐Karistianis, Nellie, et al. (2014). Functional magnetic resonance imaging of working memory in Huntington's disease: cross‐sectional data from the IMAGE‐HD study. Human Brain Mapping 35.5, 1847–1864.

  • Im, K., Lee, J. M., Seo, S. W., Kim, S. H. I., Kim, S. H. I., & Na, D. L. (2008). Sulcal morphology changes and their relationship with cortical thickness and gyral white matter volume in mild cognitive impairment and Alzheimer’s disease. Neuroimage, 43(1), 103–113

    Article  Google Scholar 

  • Johnson, E. B., Ziegler, G., Penny, W., Rees, G., Tabrizi, S. J., Scahill, R. I., & Gregory, S. (2019). Dynamics of cortical degeneration over a decade in Huntington’s Disease. BioRxiv, 537977. https://doi.org/10.1101/537977

  • Jubault, T., Gagnon, J. F., Karama, S., Ptito, A., Lafontaine, A. L., Evans, A. C., & Monchi, O. (2011). Patterns of cortical thickness and surface area in early Parkinson’s disease. Neuroimage, 55(2), 462–467

    Article  Google Scholar 

  • Kubera, K. M., Schmitgen, M. M., Hirjak, D., Wolf, R. C., & Orth, M. (2019). Cortical neurodevelopment in pre-manifest Huntington’s disease. NeuroImage: Clinical, 101913

  • Lee, J. K., Mathews, K., Schlaggar, B., Perlmutter, J., Paulsen, J. S., Epping, E. … Nopoulos, P. (2012). Measures of growth in children at risk for Huntington disease. Neurology, 79(7), 668 LP – 674. https://doi.org/10.1212/WNL.0b013e3182648b65

  • Libero, L. E., Schaer, M., Li, D. D., Amaral, D. G., & Nordahl, C. W. (2019). A longitudinal study of local gyrification index in young boys with autism spectrum disorder. Cerebral Cortex, 29(6), 2575–2587

    Article  Google Scholar 

  • Mangin, J. F., Rivière, D., Duchesnay, E., Cointepas, Y., Gaura, V., Verny, C. … Hantraye, P. (2020). Neocortical morphometry in Huntington’s disease: Indication of the coexistence of abnormal neurodevelopmental and neurodegenerative processes. NeuroImage: Clinical, 26, 102211

  • Marder, K., & Mehler, M. F. (2012). Development and neurodegeneration: turning HD pathogenesis on its head. AAN Enterprises

  • McColgan, P., Seunarine, K. K., Gregory, S., Razi, A., Papoutsi, M., Long, J. D. … Roos, R. A. C. (2017). Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington’s disease. JCI Insight, 2, 8

  • Mehler, M. F., & Gokhan, S. (2000). Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends in Neurosciences, 23(12), 599–605

    Article  CAS  Google Scholar 

  • Molero, A. E., Gokhan, S., Gonzalez, S., Feig, J. L., Alexandre, L. C., & Mehler, M. F. (2009). Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington’s disease. Proceedings of the National Academy of Sciences, 106(51), 21900–21905

  • Nopoulos, Magnotta, V. A., Mikos, A., Paulson, H., Andreasen, N. C., Paulsen, J. S., Nopoulos, P. C. … Paulsen, J. S. (2007). Morphology of the cerebral cortex in preclinical Huntington’s disease. American Journal of Psychiatry, 164(9), 1428–1434

  • Nopoulos, P. C. (2016). Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues in Clinical Neuroscience, 18(1), 91

    Article  Google Scholar 

  • Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G., & Van Essen, D. C. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. Journal of Neuroscience, 27(43), 11725–11735

    Article  CAS  Google Scholar 

  • Paulsen, J. S., Magnotta, V. A., Mikos, A. E., Paulson, H. L., Penziner, E., Andreasen, N. C., & Nopoulos, P. C. (2006). Brain structure in preclinical Huntington’s disease. Biological Psychiatry, 59(1), 57–63

    Article  CAS  Google Scholar 

  • Pereira, J. B., Ibarretxe-Bilbao, N., Marti, M., Compta, Y., Junqué, C., Bargallo, N., & Tolosa, E. (2012). Assessment of cortical degeneration in patients with Parkinson’s disease by voxel‐based morphometry, cortical folding, and cortical thickness. Human Brain Mapping, 33(11), 2521–2534

    Article  Google Scholar 

  • Plocharski, M., Østergaard, L. R., & Initiative, A. D. N. (2016). Extraction of sulcal medial surface and classification of Alzheimer’s disease using sulcal features. Computer Methods and Programs in Biomedicine, 133, 35–44

    Article  Google Scholar 

  • Poudel, G., Stout, J. C., Gray, M., Chua, P., Borowsky, B., Egan, G. F., & Georgiou-Karistianis, N. (2017). Longitudinal changes in the fronto-striatal network are associated with executive dysfunction and behavioral dysregulation in Huntington’s disease: 30 months IMAGE-HD data. Cortex, 92, 139–149

    Article  Google Scholar 

  • Poudel, G. R., Harding, I. H., Egan, G. F., & Georgiou-Karistianis, N. (2019). Network spread determines severity of degeneration and disconnection in Huntington’s disease. Human Brain Mapping. https://doi.org/10.1002/hbm.24695

    Article  PubMed  PubMed Central  Google Scholar 

  • Poudel, G. R., Stout, J. C., Salmon, L., Churchyard, A., Chua, P., Georgiou-Karistianis, N., & Egan, G. F. (2014). White matter connectivity reflects clinical and cognitive status in Huntington’s disease. Neurobiology of Disease, 65, 180–187

    Article  Google Scholar 

  • Reuter, M., & Fischl, B. (2011). Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage, 57(1), 19–21

    Article  Google Scholar 

  • Reuter, M., Rosas, H. D., & Fischl, B. (2012a). Longitudinal FreeSurfer for reliable imaging biomarkers. NIBAD’12, 275

  • Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418. https://doi.org/10.1016/j.neuroimage.2012.02.084

    Article  PubMed  Google Scholar 

  • Rosas, H. D., Hevelone, N. D., Zaleta, A. K., Greve, D. N., Salat, D. H., & Fischl, B. (2005). Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology, 65(5), 745–747

    Article  CAS  Google Scholar 

  • Rosas, H. D., Liu, A. K., Hersch, S., Glessner, M., Ferrante, R. J., Salat, D. H. … Fischl, B. (2002). Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology, 58(5), 695–701

  • Ross, C. A., Aylward, E. H., Wild, E. J., Langbehn, D. R., Long, J. D., Warner, J. H. … Paulsen, J. S. (2014). Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 10(4), 204

  • Schaer, M., Cuadra, M. B., Schmansky, N., Fischl, B., Thiran, J. P., & Eliez, S. (2012). How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. JoVE (Journal of Visualized Experiments), 59, e3417

    Google Scholar 

  • Schaer, M., Cuadra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., & Thiran, J. P. (2008). A surface-based approach to quantify local cortical gyrification. IEEE Transactions on Medical Imaging, 27(2), 161–170

    Article  Google Scholar 

  • Shishegar, R., Manton, J. H., Walker, D. W., Britto, J. M., & Johnston, L. A. (2015). Quantifying gyrification using Laplace Beltrami eigenfunction level-sets. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 1272–1275

  • Shishegar, R., Pizzagalli, F., Georgiou-Karistianis, N., Egan, G. F., Jahanshad, N., & Johnston, L. A. (2021). A gyrification analysis approach based on Laplace Beltrami eigenfunction level sets. NeuroImage, 229, 117751

    Article  Google Scholar 

  • Shishegar, R., Rajapakse, S., & Georgiou-Karistianis, N. (2019). Altered Cortical Morphometry in Pre-manifest Huntington’s Disease: Cross-sectional Data from the IMAGE-HD Study. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2844–2847

  • Soloveva, M. V., Jamadar, S. D., Hughes, M., Velakoulis, D., Poudel, G., & Georgiou-Karistianis, N. (2020a). Brain compensation during response inhibition in premanifest Huntington’s disease. Brain and Cognition, 141, 105560

  • Soloveva, M. V., Jamadar, S. D., Velakoulis, D., Poudel, G., & Georgiou-Karistianis, N. (2020b). Brain compensation during visuospatial working memory in premanifest Huntington’s disease. Neuropsychologia, 136, 107262

  • Spalletta, G., Piras, F., & Gili, T. (2018). Brain Morphometry. Springer

  • Tabrizi, S. J., Langbehn, D. R., Leavitt, B. R., Roos, R. A. C., Durr, A., Craufurd, D. … Stout, J. C. (2009). Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. The Lancet Neurology, 8(9), 791–801

  • Tereshchenko, A., Magnotta, V., Epping, E., Mathews, K., Espe-Pfeifer, P., Martin, E. … Nopoulos, P. (2019). Brain structure in juvenile-onset Huntington disease. Neurology, 92(17), e1939–e1947

  • Thieben, M. J., Duggins, A. J., Good, C. D., Gomes, L., Mahant, N., Richards, F. … Frackowiak, R. S. J. (2002). The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain, 125(8), 1815–1828

  • van der Plas, E., Langbehn, D. R., Conrad, A. L., Koscik, T. R., Tereshchenko, A., Epping, E. A. … Nopoulos, P. C. (2019). Abnormal brain development in child and adolescent carriers of mutant huntingtin. Neurology, 93(10), e1021–e1030

  • Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385(6614), 313–318

    Article  Google Scholar 

  • Wijeratne, P. A., Johnson, E. B., Eshaghi, A., Aksman, L., Gregory, S., Johnson, H. J. … Georgiou-Karistianis, N. (2020). Robust Markers and Sample Sizes for Multicenter Trials of Huntington Disease. Annals of Neurology, 87(5), 751–762

Download references

Acknowledgements

We would like to acknowledge all the participants who contributed to this study, the CHDI Foundation Inc. New York (USA), and the National Health and Medical Research Council (NHMRC) for funding IMAGE-HD. We would also like to thank the Royal Children’s Hospital Murdoch Children’s Research Institute for the use of their MRI scanners.

Funding

This work was supported by the CHDI Foundation Inc. New York (USA) (Grant Number A: 3433) and the National Health and Medical Research Council (NHMRC) (Grant Number: 606650) for funding IMAGE-HD. Alex Fornito was additionally supported by the Sylvia and Charles Viertel Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions included conception and study design (All authors) statistical analysis (BT), interpretation of results (all authors), drafting the manuscript work or revising it critically for important intellectual content (BT, RS, AF and NGK) and approval of final version to be published and agreement to be accountable for the integrity and accuracy of all aspects of the work (All authors).

Corresponding author

Correspondence to Nellie Georgiou-Karistianis.

Ethics declarations

Ethical approval

Ethical Approval was provided by the Monash University Human Research Ethics Review Committee (Project ID: 14105).

Consent to participate

This study used data collected for the IMAGE-HD study, as such informed consent had previously been obtained.

Consent to publish

As above.

Conflict of interest

The authors declare no conflicts of interest.

Conflict of interest disclosure

None of the authors have a conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, B., Shishegar, R., Fornito, A. et al. Longitudinal mapping of cortical surface changes in Huntington’s Disease. Brain Imaging and Behavior 16, 1381–1391 (2022). https://doi.org/10.1007/s11682-021-00625-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-021-00625-2

Keywords

Navigation