Skip to main content
Log in

Common and specific neural correlates underlying insight and ordinary problem solving

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Previous studies have investigated the cognitive and neural mechanisms underlying insight problem solving (INPS). However, it is still unclear which mechanisms are common to both INPS and ordinary problem solving (ORPS), and which are distinctly involved in only one of these processes. In this study, we selected two types of Chinese character chunk decompositions, ordinary Chinese character chunk decomposition (OCD) and creative Chinese character chunk decomposition (CCD), as representatives of ORPS and INPS, respectively. By using functional magnetic resonance imaging (fMRI) to record brain activations when subjects executed OCD or CCD operations, we found that both ORPS and INPS resulted in significant activations in the widespread frontoparietal cognitive control network, including the middle frontal gyrus, inferior frontal gyrus, and inferior parietal lobe. Furthermore, compared with ORPS, INPS led to greater activations in higher-level brain regions related to symbolic processing in the default mode network, including the anterior cingulate cortex, superior temporal gyrus, angular gyrus, and precuneus. Conversely, ORPS induced greater activations than INPS in more posterior brain regions related to visuospatial attention and visual perception, such as the inferior temporal gyrus, hippocampus, and middle occipital gyrus/superior parietal gyrus/fusiform gyrus. In addition, an ROI analysis corroborated the neural commonalities and differences between ORPS and INPS. These findings provide new evidence that ORPS and INPS rely on common as well as distinct cognitive processes and cortical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ORPS:

Ordinary problem solving

INPS:

Insight problem solving

OCD:

Ordinary Chinese character chunk decomposition

CCD:

Creative Chinese character chunk decomposition

OCDL:

Ordinary chunk decomposition-low difficult level

OCDH:

Ordinary chunk decomposition-high difficult level

CCDL:

Creative chunk decomposition-low creative level

CCDH:

Creative chunk decomposition-high creative level

MFG:

Middle frontal gyrus

IFG:

Inferior frontal gyrus

SMG:

Supramarginal gyrus

MPFC:

Medial prefrontal cortex

IPL:

Inferior parietal lobe

PCUN:

Precuneus

SFG:

Superior frontal gyrus

AG:

Angular gyrus

ACC:

Anterior cingulate cortex

STG:

Superior temporal gyrus

MTG:

Middle temporal gyrus

HIP:

Hippocampus

ITG:

Inferior temporal gyrus

MOG:

Middle occipital gyrus

MCC:

Middle cingulate cortex

SMA:

Sensorimotor areas

SPL:

Superior parietal lobe

FG:

Fusiform gyrus

MNI:

Montreal Neurological Institute

FWHM:

Full width at half maximum

ANOVA:

Analysis of variance

RTs:

Response times

ROI:

Region of interest

CRs:

Correct rates

DMN:

Default mode network

References

  • Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123–167.

    Google Scholar 

  • Anderson, J. R., Qin, Y., Sohn, M.-H., Stenger, V. A., & Carter, C. S. (2003). An information-processing model of the BOLD response in symbol manipulation tasks. Psychonomic Bulletin & Review, 10(2), 241–261.

    Article  Google Scholar 

  • Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116.

    Article  PubMed  CAS  Google Scholar 

  • Ash, I. K., Cushen, P. J., & Wiley, J. (2009). Obstacles in investigating the role of restructuring in insightful problem solving. The Journal of Problem Solving, 2(2), 3.

    Article  Google Scholar 

  • Astafiev, S. V., Shulman, G. L., Stanley, C. M., Snyder, A. Z., Van Essen, D. C., & Corbetta, M. (2003). Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. Journal of Neuroscience, 23(11), 4689–4699.

    Article  PubMed  CAS  Google Scholar 

  • Bechtereva, N., Korotkov, A., Pakhomov, S., Roudas, M., Starchenko, M., & Medvedev, S. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53(1), 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden, E. M. (1997). The effect of reportable and unreportable hints on anagram solution and the aha! Experience. Consciousness and Cognition, 6(4), 545–573.

    Article  PubMed  CAS  Google Scholar 

  • Bowden, E. M., & Jung-Beeman, M. (2007). Methods for investigating the neural components of insight. Methods, 42(1), 87–99.

    Article  PubMed  CAS  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.

    Article  PubMed  Google Scholar 

  • Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583.

    Article  PubMed  Google Scholar 

  • Derrfuss, J., Brass, M., & Von Cramon, D. Y. (2004). Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. Neuroimage, 23(2), 604–612.

    Article  PubMed  Google Scholar 

  • Derrfuss, J., Brass, M., Neumann, J., & von Cramon, D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Human Brain Mapping, 25(1), 22–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822–848.

    Article  PubMed  Google Scholar 

  • Dreu, C. K. D., Nijstad, B. A., & Baas, M. (2011). Behavioral activation links to creativity because of increased cognitive flexibility. Social Psychological and Personality Science, 2(1), 72–80.

    Article  Google Scholar 

  • Duncker, K., & Lees, L.S. (1945). On problem-solving. Psychological monographs 58 (5):i.

  • D'zurilla, T. J., & Goldfried, M. R. (1971). Problem solving and behavior modification. Journal of Abnormal Psychology, 78(1), 107–126.

    Article  PubMed  CAS  Google Scholar 

  • Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage, 59(2), 1783–1794.

    Article  PubMed  Google Scholar 

  • Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R, Ramrakha S, Sison ML, Moffitt TE, Caspi, A., & Hariri, A.R. (2019). Poor test-retest reliability of task-fMRI: new empirical evidence and a meta-analysis. BioRxiv:681700.

  • Ellison, A., Schindler, I., Pattison, L. L., & Milner, A. D. (2004). An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS. Brain, 127(10), 2307–2315.

    Article  PubMed  Google Scholar 

  • Fan, J., Hof, P. R., Guise, K. G., Fossella, J. A., & Posner, M. I. (2007). The functional integration of the anterior cingulate cortex during conflict processing. Cerebral Cortex, 18(4), 796–805.

    Article  PubMed  Google Scholar 

  • Fincham, J. M., Carter, C. S., Van Veen, V., Stenger, V. A., & Anderson, J. R. (2002). Neural mechanisms of planning: a computational analysis using event-related fMRI. Proceedings of the National Academy of Sciences, 99(5), 3346–3351.

    Article  CAS  Google Scholar 

  • Gick, M. L. (1986). Problem-solving strategies. Educational Psychologist, 21(1–2), 99–120.

    Article  Google Scholar 

  • Hebscher, M., Levine, B., & Gilboa, A. (2018). The precuneus and hippocampus contribute to individual differences in the unfolding of spatial representations during episodic autobiographical memory. Neuropsychologia, 110, 123–133.

    Article  PubMed  Google Scholar 

  • Heim, S., Eickhoff, S. B., Ischebeck, A. K., Friederici, A. D., Stephan, K. E., & Amunts, K. (2009). Effective connectivity of the left BA 44, BA 45, and inferior temporal gyrus during lexical and phonological decisions identified with DCM. Human Brain Mapping, 30(2), 392–402.

    Article  PubMed  Google Scholar 

  • Hermes, D., Rangarajan, V., Foster, B. L., King, J.-R., Kasikci, I., Miller, K. J., & Parvizi, J. (2015). Electrophysiological responses in the ventral temporal cortex during reading of numerals and calculation. Cerebral Cortex, 27(1), 567–575.

    PubMed Central  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.

    Article  PubMed  CAS  Google Scholar 

  • Howard-Jones, P. A., Blakemore, S.-J., Samuel, E. A., Summers, I. R., & Claxton, G. (2005). Semantic divergence and creative story generation: An fMRI investigation. Cognitive Brain Research, 25(1), 240–250.

    Article  PubMed  Google Scholar 

  • Huang, F., Fan, J., & Luo, J. (2015). The neural basis of novelty and appropriateness in processing of creative chunk decomposition. Neuroimage, 113, 122–132.

    Article  PubMed  Google Scholar 

  • Huang, F., Tang, S., Sun, P., & Luo, J. (2018). Neural correlates of novelty and appropriateness processing in externally induced constraint relaxation. NeuroImage, 172, 381–389.

    Article  PubMed  Google Scholar 

  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63–85.

    Article  Google Scholar 

  • Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences, 95(14), 8410–8413.

    Article  CAS  Google Scholar 

  • Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., Reber, P. J., & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), e97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnath, H.-O. (2001). New insights into the functions of the superior temporal cortex. Nature Reviews Neuroscience, 2(8), 568–576.

    Article  PubMed  CAS  Google Scholar 

  • Keller, C. J., Davidesco, I., Megevand, P., Lado, F. A., Malach, R., & Mehta, A. D. (2017). Tuning face perception with electrical stimulation of the fusiform gyrus. Human Brain Mapping, 38(6), 2830–2842.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kershaw, T. C., & Ohlsson, S. (2004). Multiple causes of difficulty in insight: the case of the nine-dot problem. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(1), 3.

    PubMed  Google Scholar 

  • Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(6), 1534.

    Google Scholar 

  • Knoblich, G., Ohlsson, S., & Raney, G. E. (2001). An eye movement study of insight problem solving. Memory & Cognition, 29(7), 1000–1009.

    Article  CAS  Google Scholar 

  • Kounios, J., & Beeman, M. (2009). The Aha! moment: the cognitive neuroscience of insight. Current Directions in Psychological Science, 18(4), 210–216.

    Article  Google Scholar 

  • Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882–890.

    Article  PubMed  Google Scholar 

  • Lin, J., Cui, X., Dai, X., & Mo, L. (2018). Regional homogeneity predicts creative insight: a resting-state fMRI study. Frontiers in Human Neuroscience, 12, 210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods, 42(1), 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Luo, J., & Niki, K. (2003). Function of hippocampus in “insight” of problem solving. Hippocampus, 13(3), 316–323.

    Article  PubMed  Google Scholar 

  • Luo, J., Niki, K., & Phillips, S. (2004). Neural correlates of the ‘Aha! Reaction’. Neuroreport, 15(13), 2013–2017.

    Article  PubMed  Google Scholar 

  • Luo, J., Niki, K., & Knoblich, G. (2006). Perceptual contributions to problem solving: chunk decomposition of Chinese characters. Brain Research Bulletin, 70(4), 430–443.

    Article  PubMed  Google Scholar 

  • MacKay, D. G., Stewart, R., & Burke, D. M. (1998). HM revisited: relations between language comprehension, memory, and the hippocampal system. Journal of Cognitive Neuroscience, 10(3), 377–394.

    Article  PubMed  CAS  Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving, Vol. 104. No. 9. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Newman, S. D., Carpenter, P. A., Varma, S., & Just, M. A. (2003). Frontal and parietal participation in problem solving in the tower of London: fMRI and computational modeling of planning and high-level perception. Neuropsychologia, 41(12), 1668–1682.

    Article  PubMed  Google Scholar 

  • Nijstad, B. A., De Dreu, C. K., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21(1), 34–77.

    Article  Google Scholar 

  • Ohlsson, S. (1992). Information-processing explanations of insight and related phenomena. Advances in the Psychology of Thinking, 1, 1–44.

    Google Scholar 

  • Öllinger, M., Jones, G., & Knoblich, G. (2008). Investigating the effect of mental set on insight problem solving. Experimental Psychology, 55(4), 269–282.

    Article  PubMed  Google Scholar 

  • Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of learning in novice programmers. Journal of Educational Computing Research, 2(1), 37–55.

    Article  Google Scholar 

  • Qin, Y., Carter, C. S., Silk, E. M., Stenger, V. A., Fissell, K., Goode, A., & Anderson, J. R. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proceedings of the National Academy of Sciences, 101(15), 5686–5691.

    Article  CAS  Google Scholar 

  • Qiu, J., Li, H., Yang, D., Luo, Y., Li, Y., Wu, Z., & Zhang, Q. (2008). The neural basis of insight problem solving: an event-related potential study. Brain and Cognition, 68(1), 100–106.

    Article  PubMed  Google Scholar 

  • Qiu, J., Li, H., Jou, J., Liu, J., Luo, Y., Feng, T., Wu, Z., & Zhang, Q. (2010). Neural correlates of the “Aha” experiences: evidence from an fMRI study of insight problem solving. Cortex, 46(3), 397–403.

    Article  PubMed  Google Scholar 

  • Radua, J., Borgwardt, S., Crescini, A., Mataix-Cols, D., Meyer-Lindenberg, A., McGuire, P., & Fusar-Poli, P. (2012). Multimodal meta-analysis of structural and functional brain changes in first episode psychosis and the effects of antipsychotic medication. Neuroscience & Biobehavioral Reviews, 36(10), 2325–2333.

    Article  CAS  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.

    Article  CAS  Google Scholar 

  • Renier, L. A., Anurova, I., De Volder, A. G., Carlson, S., VanMeter, J., & Rauschecker, J. P. (2010). Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron, 68(1), 138–148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruge, H., Brass, M., Koch, I., Rubin, O., Meiran, N., & von Cramon, D. Y. (2005). Advance preparation and stimulus-induced interference in cued task switching: further insights from BOLD fMRI. Neuropsychologia, 43(3), 340–355.

    Article  PubMed  Google Scholar 

  • Scott, W. A. (1962). Cognitive complexity and cognitive flexibility. Sociometry, 25, 405–414.

    Article  Google Scholar 

  • Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. The Neuroscientist, 19(1), 43–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seghier, M. L., Fagan, E., & Price, C. J. (2010). Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. Journal of Neuroscience, 30(50), 16809–16817.

    Article  PubMed  CAS  Google Scholar 

  • Sohn, M.-H., Goode, A., Stenger, V. A., Jung, K.-J., Carter, C. S., & Anderson, J. R. (2005). An information-processing model of three cortical regions: evidence in episodic memory retrieval. Neuroimage, 25(1), 21–33.

    Article  PubMed  Google Scholar 

  • Stern, C. E., Corkin, S., González, R. G., Guimaraes, A. R., Baker, J. R., Jennings, P. J., Carr, C. A., Sugiura, R. M., Vedantham, V., & Rosen, B. R. (1996). The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences, 93(16), 8660–8665.

    Article  CAS  Google Scholar 

  • Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415–432.

    Article  PubMed  Google Scholar 

  • Tan, L. H., Liu, H.-L., Perfetti, C. A., Spinks, J. A., Fox, P. T., & Gao, J.-H. (2001). The neural system underlying Chinese logograph reading. Neuroimage, 13(5), 836–846.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X., Pang, J., Nie, Q.-Y., Conci, M., Luo, J., & Luo, J. (2015). Probing the cognitive mechanism of mental representational change during chunk decomposition: a parametric fMRI study. Cerebral Cortex, 26(7), 2991–2999.

    Article  PubMed  Google Scholar 

  • Weiner, K. S., & Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 83, 48–62.

    Article  PubMed  Google Scholar 

  • Wen, X., Xiang, Y., Cant, J. S., Wang, T., Cupchik, G., Huang, R., & Mo, L. (2017). The neural correlates of internal and external comparisons: an fMRI study. Brain Structure and Function, 222(1), 563–575.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L., Knoblich, G., Wei, G., & Luo, J. (2009). How perceptual processes help to generate new meaning: an EEG study of chunk decomposition in Chinese characters. Brain Research, 1296, 104–112.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L., Knoblich, G., & Luo, J. (2013). The role of chunk tightness and chunk familiarity in problem solving: evidence from ERPs and fMRI. Human Brain Mapping, 34(5), 1173–1186.

    Article  PubMed  Google Scholar 

  • Xing, X.-X., & Zuo, X.-N. (2018). The anatomy of reliability: a must read for future human brain mapping. Science Bulletin, 63, 1606–1607.

    Article  Google Scholar 

  • Yang, W., Dietrich, A., Liu, P., Ming, D., Jin, Y., Nusbaum, H. C., Qiu, J., & Zhang, Q. (2016). Prototypes are key heuristic information in insight problem solving. Creativity Research Journal, 28(1), 67–77.

    Article  CAS  Google Scholar 

  • Zhang, M., Tian, F., Wu, X., Liao, S., & Qiu, J. (2011). The neural correlates of insight in Chinese verbal problems: an event related-potential study. Brain Research Bulletin, 84(3), 210–214.

    Article  PubMed  Google Scholar 

  • Zhao, Q., Zhou, Z., Xu, H., Chen, S., Xu, F., Fan, W., & Han, L. (2013). Dynamic neural network of insight: a functional magnetic resonance imaging study on solving Chinese ‘chengyu’riddles. PLoS One, 8(3), e59351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuo, X.-N., & Xing, X.-X. (2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100–118.

    Article  Google Scholar 

  • Zuo, X.-N., Xu, T., & Milham, M. P. (2019). Harnessing reliability for neuroscience research. Nature Human Behaviour, 3(8), 768–771.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Project of Guangzhou Philosophies and Social Sciences (Grant Number: 2020GZQN43), the National Social Science Foundation of China (Grant Number: 14ZDB159) and the Project of Key Institute of Humanities and Social Sciences, MOE (16JJD880025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Mo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Research Ethics Review Board of South China Normal University has approved the experiment protocol.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wen, X., Cui, X. et al. Common and specific neural correlates underlying insight and ordinary problem solving. Brain Imaging and Behavior 15, 1374–1387 (2021). https://doi.org/10.1007/s11682-020-00337-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00337-z

Keywords

Navigation