Skip to main content

Advertisement

Log in

Language reorganization after resection of low-grade gliomas: an fMRI task based connectivity study

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Few studies addressed the evolution of brain activity before and after brain tumor resection. Using a fMRI naming task, we evaluated possible underlying plasticity phenomena. Thirty-two patients with left low-grade gliomas (16 women; age = 38.6 ± 8.31 years) and 19 healthy controls (7 women; age = 42.4 ± 12.1) were included in the study. An overt picture-naming task (DO80) was performed pre and post (3 months) surgery, as well as within the MRI in a covert manner. Exams included an injected 3DT1, a T2FLAIR, a DTI and a GE-EPI (task) sequence. Activations maps were compared with picture naming score, FA and MD maps were estimated, a VLSM analysis was performed on tumor masks, and disconnectome maps were reconstructed. Pre-surgery, the left parahippocampal gyrus (LPH) was inversely associated with task performance. Increased pre-post surgery left lingual gyrus (LLG) activity was found related to decreased picture naming performance. The evolution of left lingual gyrus (LLG) activity was negatively associated with the evolution of picture naming performance. In controls, the LPH was functionally connected to the right precentral gyrus (RPCG) and slightly to the LLG. This was not clearly retrieved in the patient group. Preoperatively, the LLG was connected to the left planum temporale and to the right lingual gyrus. The same result was found for controls. Postoperatively, the LLG was only connected to the RPCG. No association was found between evolution of FA/MD and evolution of picture naming performance. There is not one unique pattern of pre- and postoperative plasticity concerning picture-naming performance in DLGG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The Parahippocampus subserves topographical learning in man. Cerebral Cortex, 6(6), 823–829. https://doi.org/10.1093/cercor/6.6.823.

    Article  CAS  PubMed  Google Scholar 

  • Aminoff, E. M., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends in Cognitive Sciences, 17(8), 379–390. https://doi.org/10.1016/j.tics.2013.06.009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450. https://doi.org/10.1038/nn1050.

    Article  CAS  PubMed  Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex (New York, N.Y.: 1991), 19(12), 2767–2796. https://doi.org/10.1093/cercor/bhp055.

    Article  PubMed Central  Google Scholar 

  • Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 44(8), 1105–1132. https://doi.org/10.1016/j.cortex.2008.05.004.

    Article  PubMed  Google Scholar 

  • Catani, M., Jones, D. K., Donato, R., & Ffytche, D. H. (2003). Occipito-temporal connections in the human brain. Brain, 126(9), 2093–2107. https://doi.org/10.1093/brain/awg203.

    Article  PubMed  Google Scholar 

  • Desmurget, M., Bonnetblanc, F., & Duffau, H. (2007). Contrasting acute and slow-growing lesions: A new door to brain plasticity. Brain: A Journal of Neurology, 130(Pt 4), 898–914. https://doi.org/10.1093/brain/awl300.

    Article  Google Scholar 

  • Duffau, H. (2005). Lessons from brain mapping in surgery for low-grade glioma: Insights into associations between tumour and brain plasticity. The Lancet. Neurology, 4(8), 476–486. https://doi.org/10.1016/S1474-4422(05)70140-X.

    Article  PubMed  Google Scholar 

  • Duffau, H. (2014). Diffuse low-grade gliomas and neuroplasticity. Diagnostic and Interventional Imaging, 95(10), 945–955. https://doi.org/10.1016/j.diii.2014.08.001.

    Article  CAS  PubMed  Google Scholar 

  • Duffau, H., & Capelle, L. (2004). Preferential brain locations of low-grade gliomas. Cancer, 100(12), 2622–2626. https://doi.org/10.1002/cncr.20297.

    Article  PubMed  Google Scholar 

  • Duffau, H., Capelle, L., Sichez, N., Denvil, D., Lopes, M., Sichez, J.-P., et al. (2002). Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain: A Journal of Neurology, 125(Pt 1), 199–214.

    Article  Google Scholar 

  • Duffau, H., Capelle, L., Denvil, D., Sichez, N., Gatignol, P., Lopes, M., Mitchell, M. C., Sichez, J. P., & van Effenterre, R. (2003). Functional recovery after surgical resection of low grade gliomas in eloquent brain: Hypothesis of brain compensation. Journal of Neurology, Neurosurgery, and Psychiatry, 74(7), 901–907.

    Article  CAS  Google Scholar 

  • Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., & Capelle, L. (2005). New insights into the anatomo-functional connectivity of the semantic system: A study using cortico-subcortical electrostimulations. Brain: A Journal of Neurology, 128(Pt 4), 797–810. https://doi.org/10.1093/brain/awh423.

    Article  Google Scholar 

  • Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598–601. https://doi.org/10.1038/33402.

    Article  CAS  PubMed  Google Scholar 

  • Etard, O., Mellet, E., Papathanassiou, D., Benali, K., Houdé, O., Mazoyer, B., & Tzourio-Mazoyer, N. (2000). Picture naming without Broca’s and Wernicke’s area. Neuroreport, 11(3), 617–622.

    Article  CAS  Google Scholar 

  • Farias, S. T., Harrington, G., Broomand, C., & Seyal, M. (2005). Differences in functional MR imaging activation patterns associated with confrontation naming and responsive naming. American Journal of Neuroradiology, 26(10), 2492–2499.

    Google Scholar 

  • Friston, K. J. (Ed.). (2007). Statistical parametric mapping: The analysis of funtional brain images (1st ed.). Amsterdam ; Boston: Elsevier/Academic Press.

    Google Scholar 

  • Gębska-Kośla, K., Bryszewski, B., Jaskólski, D. J., Fortuniak, J., Niewodniczy, M., Stefańczyk, L., & Majos, A. (2017). Reorganization of language centers in patients with brain tumors located in eloquent speech areas - a pre- and postoperative preliminary fMRI study. Neurologia i Neurochirurgia Polska, 51(5), 403–410. https://doi.org/10.1016/j.pjnns.2017.07.010.

    Article  PubMed  Google Scholar 

  • Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta-analysis. Human Brain Mapping, 12(1), 1–19.

    Article  Google Scholar 

  • Herbet, G., Moritz-Gasser, S., Boiseau, M., Duvaux, S., Cochereau, J., & Duffau, H. (2016). Converging evidence for a cortico-subcortical network mediating lexical retrieval. Brain, 139, aww220–aw3021. https://doi.org/10.1093/brain/aww220.

    Article  Google Scholar 

  • Machielsen, W. C., Rombouts, S. A., Barkhof, F., Scheltens, P., & Witter, M. P. (2000). FMRI of visual encoding: Reproducibility of activation. Human Brain Mapping, 9(3), 156–164.

    Article  CAS  Google Scholar 

  • Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. NeuroImage, 59(3), 2798–2807. https://doi.org/10.1016/j.neuroimage.2011.09.083.

    Article  PubMed  Google Scholar 

  • Martino, J., & De Lucas, E. M. (2014). Subcortical anatomy of the lateral association fascicles of the brain: A review. Clinical Anatomy (New York, N.Y.), 27(4), 563–569. https://doi.org/10.1002/ca.22321.

    Article  Google Scholar 

  • MATLAB Release. (2008). The MathWorks, Inc.: Natick, Massachusetts.

  • Mechelli, A., Humphreys, G. W., Mayall, K., Olson, A., & Price, C. J. (2000). Differential effects of word length and visual contrast in the fusiform and lingual gyri during reading. Proceedings. Biological Sciences, 267(1455), 1909–1913. https://doi.org/10.1098/rspb.2000.1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metz-Lutz, M. N., Kremin, H., & Deloche, G. (1991). Standardisation d’un test de dénomination orale : contrôle des effets de l’âge, du sexe et du niveau de scolarité chez les sujets adultes normaux. Neuropsychol, 1, 73–95.

    Google Scholar 

  • Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2), 65–68. https://doi.org/10.1016/S0304-3940(97)00889-6.

    Article  CAS  PubMed  Google Scholar 

  • Plaza, M., Gatignol, P., Leroy, M., & Duffau, H. (2009). Speaking without Broca’s area after tumor resection. Neurocase, 15(4), 294–310. https://doi.org/10.1080/13554790902729473.

    Article  PubMed  Google Scholar 

  • Pyun, S.-B., Jang, S., Lim, S., Ha, J.-W., & Cho, H. (2013). Neural substrate in a case of foreign accent syndrome following basal ganglia hemorrhage. Journal of Neurolinguistics, 26(4), 479–489. https://doi.org/10.1016/j.jneuroling.2013.03.001.

    Article  Google Scholar 

  • Ripollés, P., Marco-Pallarés, J., de Diego-Balaguer, R., Miró, J., Falip, M., Juncadella, M., Rubio, F., & Rodriguez-Fornells, A. (2012). Analysis of automated methods for spatial normalization of lesioned brains. NeuroImage, 60(2), 1296–1306. https://doi.org/10.1016/j.neuroimage.2012.01.094.

    Article  PubMed  Google Scholar 

  • Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M.-S., et al. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences, 105(46), 18035–18040. https://doi.org/10.1073/pnas.0805234105.

    Article  Google Scholar 

  • Soffietti, R., Baumert, B. G., Bello, L., von Deimling, A., Duffau, H., Frénay, M., Grisold, W., Grant, R., Graus, F., Hoang-Xuan, K., Klein, M., Melin, B., Rees, J., Siegal, T., Smits, A., Stupp, R., Wick, W., & European Federation of Neurological Societies. (2010). Guidelines on management of low-grade gliomas: Report of an EFNS-EANO task force. European Journal of Neurology, 17(9), 1124–1133. https://doi.org/10.1111/j.1468-1331.2010.03151.x.

    Article  CAS  PubMed  Google Scholar 

  • Stern, C. E., Corkin, S., González, R. G., Guimaraes, A. R., Baker, J. R., Jennings, P. J., et al. (1996). The hippocampal formation participates in novel picture encoding: Evidence from functional magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8660–8665.

    Article  CAS  Google Scholar 

  • Tate, M. C., Herbet, G., Moritz-Gasser, S., Tate, J. E., & Duffau, H. (2014). Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain: A Journal of Neurology, 137(Pt 10), 2773–2782. https://doi.org/10.1093/brain/awu168.

    Article  Google Scholar 

  • Thiebaut de Schotten, M., Tomaiuolo, F., Aiello, M., Merola, S., Silvetti, M., Lecce, F., Bartolomeo, P., & Doricchi, F. (2014). Damage to white matter pathways in subacute and chronic spatial neglect: A group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cerebral Cortex (New York, N.Y.: 1991), 24(3), 691–706. https://doi.org/10.1093/cercor/bhs351.

    Article  Google Scholar 

  • Tuntiyatorn, L., Wuttiplakorn, L., & Laohawiriyakamol, K. (2011). Plasticity of the motor cortex in patients with brain tumors and arteriovenous malformations: A functional MR study. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, 94(9), 1134–1140.

    PubMed  Google Scholar 

  • Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., Wu, T., Jiang, T., & Li, K. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: Evidence from resting state fMRI. NeuroImage, 31(2), 496–504. https://doi.org/10.1016/j.neuroimage.2005.12.033.

    Article  PubMed  Google Scholar 

  • Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125–141. https://doi.org/10.1089/brain.2012.0073.

    Article  PubMed  Google Scholar 

  • Wilson, S. M., Lam, D., Babiak, M. C., Perry, D. W., Shih, T., Hess, C. P., Berger, M. S., & Chang, E. F. (2015). Transient aphasias after left hemisphere resective surgery. Journal of Neurosurgery, 123(3), 581–593. https://doi.org/10.3171/2015.4.JNS141962.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the CHU Montpellier “Appel d’offres internes” and “Programme hospitalier de recherche infirmière et paramédicale” (number ID-RCB 2010-AO1313–36; UF 8674) and LabEx NUMEV project (number AN-10-LABX-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Deverdun.

Ethics declarations

Ethical committee of Montpellier gave its approval for this work and procedures were compliant with the declaration of Helsinki. Informed consent was obtained from all individual participants. Authors report no potential conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

DLGG

Diffuse low grade glioma

FA

Fractional anisotropy

FDR

False discovery rate

FMRI

Functional Magnetic Resonance Imaging

FWE

Family wise error

IFOF

Inferior Fronto-Occipital Fasciculus

ILF

Inferior Longitudinal Fasciculus

ITG

Inferior Temporal Gyrus

LLG

left lingual gyrus

LPH

Left parahippocampus

MD

Mean diffusivity

ROI

Region of interest

RPCG

Right precentral gyrus

VLSM

Voxel-based lesion-symptom mapping

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deverdun, J., van Dokkum, L.E.H., Le Bars, E. et al. Language reorganization after resection of low-grade gliomas: an fMRI task based connectivity study. Brain Imaging and Behavior 14, 1779–1791 (2020). https://doi.org/10.1007/s11682-019-00114-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00114-7

Keywords

Navigation