Skip to main content
Log in

Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study

  • ORIGINAL RESEARCH
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The “cognitive dysmetria” hypothesis suggests that impairments in cognition and behavior in patients with schizophrenia can be explained by disruptions in the cortico-cerebellar-thalamic-cortical circuit. In this study we examine thalamo-cortical connections in patients with first-episode schizophrenia (FESZ). White matter pathways are investigated that connect the thalamus with three frontal cortex regions including the anterior cingulate cortex (ACC), ventrolateral prefrontal cortex (VLPFC), and lateral oribitofrontal cortex (LOFC). We use a novel method of two-tensor tractography in 26 patients with FESZ compared to 31 healthy controls (HC), who did not differ on age, sex, or education. Dependent measures were fractional anisotropy (FA), Axial Diffusivity (AD), and Radial Diffusivity (RD). Subjects were also assessed using clinical functioning measures including the Global Assessment of Functioning (GAF) Scale, the Global Social Functioning Scale (GF: Social), and the Global Role Functioning Scale (GF: Role). FESZ patients showed decreased FA in the right thalamus-right ACC and right-thalamus-right LOFC pathways compared to healthy controls (HCs). In the right thalamus-right VLPFC tract, we found decreased FA and increased RD in the FESZ group compared to HCs. After correcting for multiple comparisons, reductions in FA in the right thalamus- right ACC and the right thalamus- right VLPC tracts remained significant. Moreover, reductions in FA were significantly associated with lower global functioning scores as well as lower social and role functioning scores. We report the first diffusion tensor imaging study of white matter pathways connecting the thalamus to three frontal regions. Findings of white matter alterations and clinical associations in the thalamic-cortical component of the cortico-cerebellar-thalamic-cortical circuit in patients with FESZ support the cognitive dysmetria hypothesis and further suggest the possible involvement of myelin sheath pathology and axonal membrane disruption in the pathogenesis of the disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akil, M., & Weinberger, D. (2000). Neuropathology and the neurodevelopmental model. In P. J. Harrison & G. W. Roberts (Eds.), The neuropathology of schizophrenia. Oxford: University Press.

    Google Scholar 

  • Alba-Ferrara, L. M., & de Erausquin, G. A. (2013). What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia. Frontiers in Integrative Neuroscience, 7, 9.

    Article  CAS  Google Scholar 

  • Andreasen, N. C., Paradiso, S., & O'Leary, D. S. (1998). "Cognitive dysmetria" as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24(2), 203–218.

    Article  CAS  Google Scholar 

  • Anticevic, A., Haut, K., Murray, J. D., Repovs, G., Yang, G. J., Diehl, C., et al. (2015). Association of Thalamic Dysconnectivity and Conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry, 72(9), 882–891.

    Article  Google Scholar 

  • Aung, W. Y., Mar, S., & Benzinger, T. L. (2013). Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging in Medicine, 5(5), 427–440.

    Article  CAS  Google Scholar 

  • Bartzokis, G. (2002). Schizophrenia: Breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology, 27(4), 672–683.

    Article  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance, 111(3), 209–219.

    Article  CAS  Google Scholar 

  • Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.

    Article  CAS  Google Scholar 

  • Bleuler, E. (1950). Dementia praecox or the Group of Schizophrenias. New York: International Universities Press.

    Google Scholar 

  • Blumenfeld, R. S., & Ranganath, C. (2006). Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. The Journal of Neuroscience, 26, 916–925.

    Article  CAS  Google Scholar 

  • Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13, 280–291.

    Article  Google Scholar 

  • Boettiger, C. A., & D'Esposito, M. (2005). Frontal networks for learning and executing arbitrary stimulus-response associations. The Journal of Neuroscience, 25(10), 2723–2732.

    Article  CAS  Google Scholar 

  • Buchsbaum, M. S., Tang, C. Y., Peled, S., Gudbjartsson, H., Lu, D., Hazlett, E. A., Downhill, J., Haznedar, M., Fallon, J. H., & Atlas, S. W. (1998). MRI white matter diffusion anisotropy and PET metabolic rate in schizophrenia. Neuroreport, 9(3), 425–430.

    Article  CAS  Google Scholar 

  • Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.

    Article  CAS  Google Scholar 

  • Cho, K.I., Shenton, M.E., Kubicki, M., Jung, W.H., Lee, T.Y., Yun, J.Y., Kim, S.N., Kwon, J.S. (2015). Altered Thalamo-Cortical White Matter Connectivity: Probabilistic Tractography Study in Clinical-High Risk for Psychosis and First-Episode Psychosis. Schizophrenia Bulletin, pii: sbv169.

  • Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  Google Scholar 

  • Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 3–10.

    Article  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002a). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P). New York: Biometrics Research, New York State Psychiatric Institute.

    Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002b). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Non-patient Edition. (SCID-I/NP). New York: Biometrics Research, New York State Psychiatric Institute.

    Google Scholar 

  • Flynn, S. W., Lang, D. J., Mackay, A. L., Goghari, V., Vavasour, I. M., Whittall, K. P., Smith, G. N., Arango, V., Mann, J. J., Dwork, A. J., Falkai, P., & Honer, W. G. (2003). Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Molecular Psychiatry, 8(9), 811–820.

    Article  CAS  Google Scholar 

  • Friston, K. J. (1996). Theoretical neurobiology and schizophrenia. British Medical Bulletin, 52(3), 644–655.

    Article  CAS  Google Scholar 

  • Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125.

    Article  CAS  Google Scholar 

  • Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Journal of Clinical Neuroscience, 3(2), 89–97.

    CAS  Google Scholar 

  • Glenthøj, B. Y., & Hemmingsen, R. (1997). Dopaminergic sensitization: Implications for the pathogenesis of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 21(1), 23–46.

    Article  Google Scholar 

  • Goldberg, E., & Seidman, L. J. (1991). Higher cortical functions in normals and in schizophrenia: A selective review. In S. R. Steinhauer, J. H. Gruzelier, & J. Zubin (Eds.), Handbook of Schizophrenia, Volume V – Neuropsychology, Psychophysiology and Information Processing. Amsterdam: Elsevier.

    Google Scholar 

  • Goldberg, I. I., Harel, M., & Malach, R. (2006). When the brain loses its self: Prefrontal inactivation during sensorimotor processing. Neuron, 50(2), 329–339.

    Article  CAS  Google Scholar 

  • Hien, D., Matzner, F. J., First, M. B., Sptizer, R. L., Gibbon, M., & Williams, J. B. W. (1994). Structured clinical interview for DSM-IV-child edition (version 1.0). New York: Columbia University.

    Google Scholar 

  • Hoffman, P., Jefferies, E., & Lambon Ralph, M. A. (2010). Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: Convergent neuropsychological and repetitive TMS evidence. The Journal of Neuroscience, 30(46), 15450–15456.

    Article  CAS  Google Scholar 

  • Hooker, C., & Knight, R. (2006). The role of lateral orbitofrontal cortex in the inhibitory control of emotion. In D. Zald & S. Rauch (Eds.), The orbitofrontal cortex. New York: Oxford University Press.

    Google Scholar 

  • Jeurissen, B., Leemans, A., Tournier, J.-D., Jones, D. K., & Sijbers, J. (2013). Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 34, 2747–2766.

    Article  Google Scholar 

  • Kim, J. J., Kim, D. J., Kim, T. G., Seok, J. H., Chun, J. W., Oh, M. K., & Park, H. J. (2007). Volumet-ric abnormalities in connectivity-based subregions of the thalamus in patients with chronic schizophrenia. Schizophrenia Research, 97(1–3), 226–235.

    Article  Google Scholar 

  • Kubicki, M., & Shenton, M. E. (2014). Diffusion tensor imaging findings and their implications in schizophrenia. Current Opinion in Psychiatry, 27(3), 179–184.

    Article  Google Scholar 

  • Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., Jolesz, F. A., & Shenton, M. E. (2007). A review of diffusion tensor imaging studies in schizophrenia. Journal of Psychiatric Research, 41(1–2), 15–30.

    Article  Google Scholar 

  • Kubota, M., Miyata, J., Sasamoto, A., Sugihara, G., Yoshida, H., Kawada, R., Fujimoto, S., Tanaka, Y., Sawamoto, N., Fukuyama, H., Takahashi, H., & Murai, T. (2013). Thalamocortical disconnection in the orbitofrontal region associated with cortical thinning in schizophrenia. JAMA Psychiatry, 70(1), 12–21.

    Article  Google Scholar 

  • Kullmann, S., Callaghan, M. F., Heni, M., Weiskopf, N., Scheffler, K., Häring, H.-U., Fritsche, A., Veit, R., & Preissl, H. (2016). Specific white matter tissue microstructure changes associated with obesity. NeuroImage, 125, 36–44.

    Article  Google Scholar 

  • Lee, D. Y., Smith, G. N., Su, W., Honer, W. G., Macewan, G. W., Lapointe, J. S., Vertinsky, A. T., Vila-Rodriguez, F., Kopala, L. C., & Lang, D. J. (2012). White matter tract abnormalities in first-episode psychosis. Schizophrenia Research, 141(1), 29–34.

    Article  CAS  Google Scholar 

  • Malcolm, J. G., Michailovich, O., Bouix, S., Westin, C. F., Shenton, M. E., & Rathi, Y. (2010a). A filtered approach to neural tractography using the Watson directional function. Medical Image Analysis, 14(1), 58–69.

    Article  Google Scholar 

  • Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2010b). Filtered multitensor tractography. IEEE Transactions on Medical Imaging, 29(9), 1664–1675.

    Article  Google Scholar 

  • Manoach, D. S., Gollub, R. L., Benson, E. S., Searl, M. M., Goff, D. C., Halpern, E., Saper, C. B., & Rauch, S. L. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 48(2), 99–109.

    Article  CAS  Google Scholar 

  • Mitelman, S. A., Torosjan, Y., Newmark, R. E., Schneiderman, J. S., Chu, K. W., Brickman, A. M., Haznedar, M. M., Hazlett, E. A., Tang, C. Y., Shihabuddin, L., & Buchsbaum, M. S. (2007). Internal capsule, corpus callosum and long associative fibers in good and poor outcome schizophrenia: A diffusion tensor imaging survey. Schizophrenia Research, 92(1–3), 211–224.

    Article  Google Scholar 

  • Oh, J. S., Kubicki, M., Rosenberger, G., Bouix, S., Levitt, J. J., McCarley, R. W., Westin, C. F., & Shenton, M. E. (2009). Thalamo-frontal white matter alterations in chronic schizophrenia: A quantitative diffusion tractography study. Human Brain Mapping, 30(11), 3812–3825.

    Article  Google Scholar 

  • Rathi, Y., Kubicki, M., Bouix, S., Westin, C. F., Goldstein, J., Seidman, L., Mesholam-Gately, R., McCarley, R. W., & Shenton, M. E. (2011). Statistical analysis of fiber bundles using multi-tensor tractography: Application to first-episode schizophrenia. Magnetic Resonance Imaging, 29(4), 507–515.

    Article  Google Scholar 

  • Roussos, P., & Haroutunian, V. (2014). Schizophrenia: Susceptibility genes and oligodendroglial and myelin related abnormalities. Frontiers in Cellular Neuroscience, 8(5).

  • Rygula, R., Walker, S. C., Clarke, H. F., Robbins, T. W., & Roberts, A. C. (2010). Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning. The Journal of Neuroscience, 30(43), 14552–14559.

    Article  CAS  Google Scholar 

  • Schneiderman, J. S., Buchsbaum, M. S., & Haznedar, M. M. (2009). Age and diffusion tensor anisotropy in adolescent and adult patients with schizophrenia. NeuroImage, 45(3), 662–671.

    Article  Google Scholar 

  • Seidman, L. J. (1983). Schizophrenia and brain dysfunction: An integration of recent neurodiagnostic findings. Psychological Bulletin, 94, 195–238.

    Article  CAS  Google Scholar 

  • Seitz, J., Zuo, J.X., Lyall, A.E., Makris, N., Kikinis, Z., Bouix, S., Pasternak, O., Fredman, E., Duskin, J., Goldstein, J.M., Petryshen, T.L., Mesholam-Gately, R.I., Wojcik, J., McCarley, R.W., Seidman, L.J., Shenton, M.E., Koerte, I.K., Kubicki, M. (2016). Tractography Analysis of 5 White Matter Bundles and Their Clinical and Cognitive Correlates in Early-Course Schizophrenia. Schizophrenia Bulletin, pii: sbv171.

  • Shenton, M. E., Dickey, C. C., Frumin, M., & McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Research, 49(1–2), 1–52.

    Article  CAS  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2006). Exploring the thalamus and its role in cortical function (2nd ed.). Cambridge: MIT Press.

    Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.

    Article  Google Scholar 

  • Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.

    Article  Google Scholar 

  • Song, S. K., Yoshino, J., Le, T. Q., Lin, S. J., Sun, S. W., Cross, A. H., & Armstrong, R. C. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage, 26(1), 132–140.

    Article  Google Scholar 

  • Stanek, K. M., Grieve, S. M., Brickman, A. M., Korgaonkar, M. S., Paul, R. H., Cohen, R. A., & Gunstad, J. J. (2011). Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity, 19, 500–504.

    Article  Google Scholar 

  • Steiner, J., Martins-de-Souza, D., Schiltz, K., Sarnyai, Z., Westphal, S., Isermann, B., et al. (2014). Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. Frontiers in Cellular Neuroscience, 8, 384.

    Article  Google Scholar 

  • Van der Werf, Y. D., Jolles, J., Witter, M. P., & Uylings, H. B. (2003). Contributions of thalamic nuclei to declarative memory functioning. Cortex, 39(4–5), 1047–1062.

    PubMed  Google Scholar 

  • Wang, Q., Cheung, C., Deng, W., Li, M., Huang, C., Ma, X., Wang, Y., Jiang, L., Sham, P. C., Collier, D. A., Gong, Q., Chua, S. E., McAlonan, G. M., & Li, T. (2013). White-matter microstructure in previously drug-naive patients with schizophrenia after 6 weeks of treatment. Psychological Medicine, 43(11), 2301–2309.

    Article  CAS  Google Scholar 

  • Wang, H., Liu, S., Tian, Y., Wu, X., He, Y., Li, C., et al. (2015). Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a Cuprizone-induced mouse model of demyelination. Frontiers in Cellular Neuroscience, 9, 492.

    PubMed  PubMed Central  Google Scholar 

  • Weinberger, D. R., Egan, M. F., Bertolino, A., Callicott, J. H., Mattay, V. S., Lipska, B. K., Berman, K. F., & Goldberg, T. E. (2001). Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry, 50(11), 825–844.

    Article  CAS  Google Scholar 

  • Wernicke, C. (1906). Grundriss der Psychiatrie. Stuttgart. Germany: Thieme.

    Google Scholar 

  • World Health Organization. (2008). The global burden of disease. Geneva: Thieme.

    Google Scholar 

  • Zang, B., Ardekani, B. A., Tang, Y., Zhang, T., Zhao, S., Cui, H., Fan, X., Zhou, K., Li, C., Xu, Y., Goff, D., & Wang, J. (2016). Abnormal white matter microstructure in drug-naive first episode schizophrenia patients before and after eight weeks of antipsychotic treatment. Schizophrenia Research, 172(1–3), 1–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laura Levin-Gleba, BS, Xue Gong, BA, Dominick Newell, BA, and Anni Zhu, BA for their support as research assistants. We also thank the clinical, research assistant, and data management staff from the Boston CIDAR study, including: Caitlin Bryant, BS, Ann Cousins, PhD, APRN, Grace Francis, PhD, Molly Franz, BA, Michelle Friedman-Yakoobian, PhD, Lauren Gibson, EdM, Anthony J. Giuliano, PhD, Andréa Gnong-Granato, MSW, Maria Hiraldo, PhD, Sarah Hornbach, BA, Matcheri Keshavan, MD, Kristy Klein, PhD, Grace Min, EdM, Corin Pilo, LMHC, Janine Rodenhiser-Hill, PhD, Julia Schutt, BA, Rachael Serur, BS, Shannon Sorenson, BA, Reka Szent-Imry, BA, Alison Thomas, BA, Chelsea Wakeham, BA, and Kristen A. Woodberry, MSW, PhD, Finally, we are grateful for the hard work of many research volunteers, including, Devin Donohoe, Zach Feder, Sylvia Khromina, Alexandra Oldershaw, Elizabeth Piazza, Julia Reading, and Olivia Schanz.

Funding

This study was supported by NIH P50MH080272 (LJS, JMG, RWM, MES, NM, RMG, JW), R01MH102377 (MK, MES, YR), R01MH097979 (YR), VA Merit Awards (RWM, MES), The Commonwealth Research Center (SCDMH82101008006, RMG, LJS, JW), and a VA Schizophrenia Center Grant (RWM, MES). This work was also supported by the Dupont-Warren, Livingston and Shore Fellowships from the Harvard Medical School, a Faculty Development Fellowship from Boston Children’s Hospital (HMH), a NIH/NIMH T32 MH 016259-29 Stuart T. Hauser Clinical Research Training Program in Biological and Social Psychiatry NIH P50MH080272 (JF). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham M. Hamoda.

Additional information

R. W. McCarley died on May 27, 2017 and L. J. Seidman died on September 7, 2017 before the publication of this work was completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamoda, H.M., Makhlouf, A.T., Fitzsimmons, J. et al. Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: a two-tensor tractography study. Brain Imaging and Behavior 13, 472–481 (2019). https://doi.org/10.1007/s11682-018-9862-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-018-9862-8

Keywords

Navigation